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Sumzery

An investigation is made into the stability of four
types of two-dimensioral free surface flows of an ideal fluid
when subjected to small perturdbations.

For the case of a bounded hollow vortex flow only
nautrally stable pefturbations are found, and the propagation
of these perturbations is compared to the nropagation of gravity
waves in waters The impinging of a jet upon a plate ol finite
width 1s also found to be & stable configurations A serias of
orifice flows 1s investigated, all of whose perturbations are
found to be stable with the ex-e; tion of an isolated unstable
perturbaticn in the case of one member of the series, namely
the flow through a Zorda =outhpisces, Finally the existcence of
unstahle perturbariong is indicated in the case of equal and

ooposite impinging Jels.
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ON THE STABILITY OF SOME FLOWS OF AN \
IDEAL FLUID WITH FREE SURFACES! ‘

By -
Jo L. Pox2 and G. W. Morgan3 (Brown University)

I. Introduction

Steady state plans flows of an incompressible inviscid
fluid vith free surfaces vere originally stidied by Helmholts |
{27’ and Kirchoff (3], and have since been thoroughly rchortod f 
in the literaﬁure. Their work was an attempt to improve the o
classical !2}2&199“ of flow around sharp corners which arc
physically unacceptadble because they give rise to infinite
velocities at the corners, Helmholts and Kirchoff reasoned that
as the velocity becomes large, the pressure in the fluid de-
creages to the value at which the fluid goes over into the
vapor states This gives rise to a so called cavitated regioﬁv~

‘bounded by a "free surface" over which the pressure is assumed

to bde maintained constant and uniform,
One also deals with steady frec surface flows in the

caso of jots floving in an ambient constént pressure atmosphere.

1. The rosuits presonted in this report were obtained in tho
course of research conducted under contract N7onr=35807
sp~nsored by tho Mechanics Branch, Office of Naval Rescarch,

e hesecarch Assoclate, Graduate Division of Appifed Mathematles,
Yo Assistant Prsfessor,Graduace Divis*ﬂn&of Aprli»l Mathemacsices,

b Humbors in Pracketsg refar ta tho biblinerathy A% the nnl
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Several examples of such problems are treated by Milne-Thompson
(4.

Vary little woark has becn done in the past concerning
time Acpendent flows with free surfaces., Lord Kelvin (5] dis-
cuzged the vibrationg of a hollow columnar vortex flow, Some
unsteady free surface flows under ths influence of external
forcas, such as gravity waves in water are discussed in Lamb
[{(] and the investigation there is extended to include the
affocts of surface tension and viscosity.

Rocently Ablow and Hayes [1) developed a theory of
the smzll perturbations of the two-dimensional flow of a pere-
fect fluld in the precence of a free gurfdce without external
forccs.. They then used their theory to study two specific
probfems, namely the {low around a hollow vortex and the flow
tnroggh 4 torda mouthplece,

i Tho present Investigntion will concern itself with an
'axtensian af tha wiark of Ablow and Huyes [1] to some frec sure
face fluows of jets as woll as to n number of gencralizations
or'prsblema treated dn {1)s  Our primacy roneern will be to ob-

tain informiiicn concerning the stahllity »y these [lows,

”»
ITe  pegums ot Buzic Thoopy

cne Rasle wn ooy undarlving the ootheds noed in this

crert has beon discusnrzd in setall in the work of Asl-y and
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A.  Asgimptions

We shall be dealing with perturbations of steady state
flows which do not fill the entire plane, They can be conve-
niently divided into three categories: (1) flows which are
cavitated due €0 the fact that thers {3 a minimum preassure the
fiuid can sustain; (2) Jet type flowsy; (3) flows which are
a combinétion of (1) and (2). In all cases therc exist in the
steady flow {ree surfaces along which the pressure remsins
constant and uniforem,

The fluid is assumed homogenoous, incompressible and
inviseid, Both the stecady amd perturbed stateg are assumed to
be irrotational and two-dizcnsional.

All yuantities are written in ndn-dinensional form
through the uce cf a cha-acteristic length, pressuregand veloc=
ity in guch a muner at to» make the steady state veloclity along
the froe surface of unit magnitide,

Under the us.uwptions made the llovws must satisfy

Bernsullif's egzuation in the form
o + % £Q€ 4 g8 = CLE) {7a 1)

whaere p {3 thn pressure, » *he density, 4 the velocity. ¢ the
veloaclity potential and 7{¢)} tg a fanetian ~f tine alsne, The
dos intionves voctin) HfTeroatdact n with resiect Lo time,

» . - .y e ame D opL W - - 5 " -
Lerarg, Wi Tl inTTLligg 1 ovarlier notentiasl £
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where v = 4 - iv and u and v are the cartesian velocity compo-

nents in the z = x + 1y plane,

B. Ragic Elow

The basic steady flow satisfles ths steady form of
(2.1)
P * % pqi = constant (2.3)

whore the use of a zero subscript denotes the basic st¢ady

flow. Since
: af _

Yo * 33 and Qg = lwoi
o

we can write (2.3: as

+ % W, W_= constan
Po + 8 p¥y W, nstant

where the har indica‘es the oporation of takinzg the complex

ccnjugate.

Ce urbat Hels? !
Ye shnil now give the ste-dy state bazic flow 2 small

perturbaticn in teras of 2 2m~.1 real parometer ¢ in the “orm

z oo, + tzl(zg,t)
f{z,%} = fgﬁzjé + ffiitﬁgtE
wiz, t) = w (250 + wiylz %)
plzats o n {2t 5 apyla , 0]
dhore T oont o oare o analvtio Twetioan o Z.e ALY slibEnagent



35807/2 5

relations will be linearized by neglecting terms of order c2
and higher, Hence all perturbations are small perturbations
in that they are correct only to first order ine, It is con=
venient to perturdb the 1ndépendent varlable z,, although the
repturhatisng in £, w and p are given in terms of the fixed
point z..

The perturbations glven azbove are not independent
since we can derive the following relations from (2.1) and

(2.2}

omn

(2.4)

pl + pR‘L [Hl Vo + rl - Ho zl} - O (2.5)

where the prims indicates partial differentiation with respect
to f . Thus, ve see that only two ¢f the four perturbztinns
are independent,

we note that, when-propcrly choseng two different

sets of perturbations, e.r., (33,f ) nnd(zk,f%) may reprezent

3

the same pryslcel perturtttion, Thelr d{fference, namely

- - - M T s I '3 & - .
zI 23: Z)1 f{ = f3 fk’ @111 louve the Tlow unchunged nd

the perturtatizrn (zI,fI) will be criled an iav-rlant perturbae
tion,

#e duline o statlizn.ry pooturbation (zg,fz) to be one
in which any given phyelcil ;orturbation 1z evaluated 2t o
fixed point z, of the barie flow, l.e., One Tor vhich the space

varizihle 43 nct porturbed (2

Losi 1
[ %
goniing to s civan perturbatisa {ziifi}, a unigue stationary
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form by superposing on (zy,f;) the invariant perturbation
z, = = 2y

Using {(2.&) and (2.%5) we can derive the foliowing rela=-
tions hetweon the stationary perturbaticns f2, LP amnd Ps

~ - wa R I' (21'6)

P, = = pRL [w, v otlasr

RESEE N (2,7)

In this formulation there is only one independent per-
turbation guantity, say rz, restricted only by the conditicn
that it be admissible under the boundary conditions of the
problem,

In subseyuent sork, for the saxe of compactness, we
shall not change the name of a function after a chaage ol inde-

rendent variable, e.g.e, we shall write
iti - r -
fiz ) = f Lwo(zo)] = £{w,)e

D¢ Pree ur Zoanditio

o

“ners aro two convilticong that must el o the “reg

surface, Flrst, tha Trea surface ~rrisure remuains constaint,

anel secsnd, a rarticle osriginally on the free surlace fomaing

&1 the Ires surfase in the perrurnel statc. rnm (5,591 We 3oe

where we have used the relation between £ and its stlationary
ES
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f2 = tl - HO zlo
The second condition can be shown to imply that
Im [f; + (UO 31)' + (Vo 81). ] = Q. (2.9)

We can satisty (2.8) identically if we set the expres-
sion in the bracket equal to iX(z_,t), where the function x is

real on the free surface and otherwise arbitrary. Solving

for 2, ve have

z) = ;lz {u- plr, }} (2.10)

where the operator D )= -y—J + ‘g{-J o Now substituting for
o

2, from (2.10) in (2.9) we find, after some reduction, that the

free surface boundary condition is
m{n (£, - W [£,) - fa} = 0 (2.11)

¥
¥ne = W /W
hr‘u- 0/00

Ad>pting the notation

D [f, - w [f,] -1, (2.12)

o
ea
i

L (£,]

{2.1!) beccomes with ¥ as the inlepenient varinile

Hw,) = H{w)) on W, Gg = 1. (7, 13)
E, guner 5o

The aldditional boundary conditions depend mainly upsn
the jarticular flow considered, we shall here discuss sume

toundary conditions tha ccour ia most of the pr.blerms to be
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investigated.

‘In general, from a physical point of view, we shall
demand that all perturbation quantities be regular at any regue-
lar, finite interior point of the basic flow. The term regular
as applied to a function implies that the function is develop-
able in a Taylor searles, while by a regular point of the basic
flow we mean a point at which the bdasic flow potential is
ragular, '

Most of the flows we shall consider origiﬁate at in-
finlpy, iees¢y have a source point at infinity. Since we do
not wish the perturbations to alter the fundamental nature of
the basic flow, we require that the pressure and velocity per-
- turbations vanish at the source"point.

(1) At upstream infinity (source point),
(a) the perturbation of velncity vanishes
lim w, =0
g, ® °

{b) the perturdbition of pre.sure vinishes. Fron

2¢7) this implies

. - ' p
zlig RL [w, v ;2 + f2] =0
s xn

using coniition 1{a), 1(d) rejuces to

L
JE W) = 0
Ry

(2) Along any fixed wall in the flov the perturbed flow
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can have no component normal to the walle This condition is

satisiiaed if

b
= is real on a fixed walle
o

{31) If in the basiec flow the free surface originates
at & sharp edre, it must continue to originate there in the
perturbed "low if no infinite velocities are to nccur. We
shoose zl such that a point z, ON the basic flow free surface
£088 intn & rnint 2z on the perturbed free surfaces Our bound-
ary condition rdemands that the basic [low free surface and
perturhed frees surface coincide at a sharp edge where ths free

surface firzt originnteds We can satisly our houndary condi-

tion 1f z, = 0 there which becomes from (2,10)

n
L

0=z =4 {”""D["zﬂj

|
v

(L) In subseyuent work we shiall consider a flow in-
volving a h~llow vortex. This problem reypiires gsome creclul

congiderations,
(a) Az, = D

where A( } indlicates the change in 2 Qquantity after pring
around a clogad cont ur encliraling the vortexs This condition

hon ensurez that tho rertarbed {rag straasline reasing clnsed,
{t) Af = 1U(t)
“

B B % [} .- » i i
wrere T{t) is a real walued Tunntisn of timo,
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This ensures that the circulation about any closed
contour moving with the fluid remalins constanty, a consequence

of Kelvin's theorem (sce [&, p. 361),

Po Symmeiry Congiderationg

In czcag whore the hagie flog hag a velnclity distribu-
tion which 13 a sy-metrie function of z {symmetric b
certain simplifications can be made in the problems In funce

tional notation a symactrie function F(v) sutisfies

Fiv) = F3(V)

while an anti-symmetric fanction satlsfies

Piv) = - FAW) .
We can combine both relations in a convenicat notation
s -
Fo(v) = + P&V
whero the + and = signs go with the symmetric and anti-symret-
ric ports recnoctively.

Certaln op ratimsg porcorz.d on 1 synwetrie or antla
sy»=:wric fune¥t-on prcgarve thene rropirtics, It exn be shown
For ex~meyr thet the “rorotsns of Affrorentintl noand tnte-
gravl o onore Ly uetry rres-reiag, leoe, the wymoetry oar oantle

gy~ +try A0 vt anstdoon oroocadn unthoneed, Ao T
Fllvy o= s FUW)

b T T . . v € m b Y e
st oW renntorm s o e vnriario o q ootk ot
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u{v) = u(v)

then S 3 _
PHu) = + gh
(i.¢., tha function rctaing its symmetry or anti-synometry
properties in the u plane)s
The imzortant conscquence of these considerntions 1s
cmbodicd in a2 thoorem which will be stated here without proof,

(for praof see [1, pp 26 et seq. ).

Syvetry Theorem: If the basic flow 1s syamctrice, any
pertarbation can be represcnted as the sum of a symmutric and
an antlesymmetric perturb-tion e¢ach of which sutisfiosg all
toundury conditions and so 1s an admissible perturbation in

its own right,

of Time D.oenjuneg

At this point in the develspaent of the theory, the
cnly r-striction placed on the poerturbaticn in tho potontial
is th~%t 4t sh.ll satisfy all applicble bhoundary conditions.

w1 shill nttack the rablem by nssundng s~lutisnsg of the form

N
r. = Gl(wa)(,- t + Gz(wf)(xt . (D4 1k)

= ~

lolipnte what =t lg b fne of uime bl e will 1end

- e -3 - P ST . . H .- [OT S 1 . . - * R
to o cdgenvers yocbien forothe orersiuntl oo of the fanctisng

"},‘ ek };. woooEpomt e Tinl et b Noand o r e litioons onan

hee nenigfict nly Tor aertcln spemlfic vnlus of Noand thet a

£ ool ool onwtll o omam o ol suen sl omentary e
T ioorim ey ot oCtll oLt aterins the mopnitorde
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zf the real part of all admissible A since this will indicate
the stabillity of the flcw, We shall have

unstable perturtations for R£.~{h} >0
neutrally stable perturbations for R{.1{x} =0

stable perturdbations for RL -(kz < O
It might seem sufficient to assume f? in the form

- at
r2 = G(wo)e (2.1%a)

since if X\ and \ were both eigenvalues, both would be (ound
anong the admissitle values of \e The form (2.14%) has been
chosen because 1t is found that the elementary form (2.14a)
13 not capable of 3atisfying all the boundary conditions,
whereas the form (2.14%) can represent an admissible perturba-
tion.

Sul.stitutisn of the form for f, from (2,14} 1n our

previsus expreszicn (2.12) for the »yerator H rives

. At At
H(w.) = L, [G1le”" + L [Gy]e (2.19)
whore w%
LICT = = Gy uy * MOy, + MW+ 0w] (2.16)

2ur frea  sur’oee boundars ennditt n 0, 1%) beeomes

L.‘ EGl('&'ﬁ)} = LS' [G,__;('i.‘?j)} . (20 17)
in * e event the b .zlc Yi-w s zymmetric we can dow

comprse FaoAntr symmenle wdd antiesymetris camusnents ond
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13
s
£, = £, + £5
where _
rﬂ = Ga ekt + Gg 2] t (2.18)
1 2
ard we can shéw that
i 8 -
62 (wo) = 4 Gl (wo) . (2919)

with (2.19) wa can elininate 62 from ocur free surface

comdition (2.17) which then becomes
s

S
Ly (6] (u)] = 2 Ly (6] (M)

. boundary

(2, 20)

This condition 15 to be applied on the free surface
wé;a =1 or ;o = (;L). We can use snalytic continuation,
0

howevery, and demand that it hold over the entire w, plane,

The romainder of thls report will be devoted to solve
ing the perturbdatian cequation (elther (2.17) or (2.20)) for

several different tyces of ;roblems,

In the remainder of the work the subscr! st zero used

in dencting the basic flow veloclity w, will be dropped,

ITi. Hpllew Vaptex Founled by Gyld

-
- 0

o firzt rrablem to boe investirated 1r 2 goneralizae
tiorn of one treated in (1),

Ae uaglc Fluw

The basis flow 1s a cyelic frrstati nol ootinn with

gircular zércasmidimer wouanded on the dtsie by a 5-144 oircu-

lar wall and on the fnsiie by a o nacentpeic rireiiar hallow
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vortex forming a congtant pressure surface. +e shall denote
the radius of the undisturbed free surface by a and of the
fixed walls by b, or in dimensionless form by 1 and b/a = 1/a
(see Figure 1),

de can readily find the form of the basic flow poten-
tial in the hodograoh plane (see Figure 2) as (see [4 pp 316

et seg, ])

r, =1 logw (3. 1)

and wn find

E
i

w' =0 (3-2)

where we rocall that the prime denntes L .

3« Form of the Perturbation kotential
In the hedopraph plane the entire physical flcw is
contalned in the annulus brunded by Iwl = 1 and lwl=a = a/b,
Since we exjcct the perturbed flow to have the same fundamene
tal nawure as the bazic flow, we cun allow singularities of
the rerturhed flow only at sinsular points of the basic 1w,
in this cass the ~nly such point {3 w = O, WwWith this in =ind,

we shal’ amgume az the 7ort general Sorm Car

i
.

r - o E kt ~p. )t & 2 )
1- = ul\u’ 1) - u;;,-_-r it [T
e P
S.lw) = By T oW oa S a W
- & —t T
-5
63'\“
15 34 T. k
£y e %, 't s
s fw} @ P S A sa LM
-y
wils Iy, o s, 2% T artitrary ooty
rovor e ¥ - 4 .
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C. Anplication of the Boundary Conditions
#We ghall now apply the relevant boundary conditions

of Lection II to the general form for f£,, {3+3)

(1) Af, = 1 C(t) where Af, represents the change in fp
after proceeding about a closed contour encireling the origin
and C(t) 135 a real Tunction of time, This boundary condition
en.ures sonstaacy of circulation for any contour encircling

tho singularity.
The application of this houndary condition gives

B, = By

(2) 'all streamline nounlary condition
Ve shall Insist that the surface |w| = a which is the

map »f the fi%ed wull remaln a streamline, f.c., that

W -
== be reaxl en |wl o= a.
-

Tha «rpression for we/v 1z Tound from (2.€) to bo

Marlao the o r©ooriate sabctituslons we find

> + Y - b ] L3 ¥ ] - .-.-
. ) =i, AL “~1 ! K=-L 4 At
o 7 .-_L + X7 ¢ + — s
-4 ” ; 3 Tt W ’F E.. + > '(b:"w }j
Te - Ry ¢
te st oen dwl o2 oa. Blaowiil b ot faroall time t 30 404
- I
Tl wa
. . - ——
a - H - ”~
¢ - LA * ! e - f:
A LRI - -r_>1 " - 1 -: ;. . ‘.:.-‘ ,r‘-.;‘:‘r ] é- ‘
W 'oom i -y - -
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Performing the indicated conjugate operation we have

m ——-— —
-1[51 + jg% rarwr] = 1[B, + 2. kbgwk} .
e ) kzwory

"
Substituting w = a /v and equating coefficients of

like powers of w we find

3, = =B
and hence
3, = 0
1
&m - - :ln )+
b-n = @ a (3.4)
or ]
b = Q-‘ng .
n -l

(3) The free surface boundary oosnlition is piven by

(2.1?) as

Lk{sl(”” = L:ft‘:.,(w)] on wWw =1,
wrich {n exparndead “orm ig
- z »
W s < R . -5,
B Gy ¢ DWGy, ¢ AWGy _[iJ. Gy * TG, ¢ Ny ]

<
o
¥
LW
TR
L ]
o
bo
1
-
{"
[ 5]
o
-
c*
.
-
‘e
-«
-
5
~
-~
e
-
o~
w
®

g4 usins the roci'ts 2f (i) we attaln alter somo alechraice

maipule-ion, toe T liowing relation
i &1 . Fr‘ b } -
- ' R e -& o -
Lo {tlay = dr) e v - L om0 T [-t(ak 4 L) -tk
r-m F PR 7 o

(3, 9)
IT we e Ut fT e danty AY h‘n Wee AN Y 4 tho salurtton

]
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of a guadratic equatidp in n which gives rise to an infinite

set of \'s, say )\, where

A, = i(n 2 VE(n)) (3.6)
and
N(n) = n 1=-9a"
1+ a2n

focr all integer n.

We can now find the [inal forms of Gl(w) and G,(w)
in the expression (1.3) for an elementary solution of the per=
turbation potontial 2. We Tind two such elementary solutions.

Corresponding to

X o= 4(n + Vi(n))

n,
we have —_—
n i(n+ Vi(a) )t
f,, =a,wv e + i
‘.nﬂ.; + (_",—- 7)
ey L _ - T—
N __j‘.n I n i(n+ VH(n))t

-

a.xd coarrearonding to

o= i(n - Vvialn))
Wi ?l-'.g’l,’c . " i(r:."‘ i‘/::?n))t
T T a woe ‘ -
:b‘ !5.. B ﬂ‘
{ 40 3)
- -n -i{n= VH{a)t
# Z 3 w &
e
whe re R, vl oA, are ST itrary oonstante, g qnte that sageh
ta ‘-
"i"’m."“'it‘irjl' 5 ; PR 5 ift‘e' i"]a-'i} ¢ tq-r*‘ in "g;‘; "iv‘i by ?.-'2"',': !n 'J_:‘.

Ao ot an Ui oa ereeral giatzsible portartacton will be
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found as the sum nver all n of such elementary solutions.

Ds Final Forms of the Ferturbation Quaatitieg

If we write 8 :zolutinn for a general admissible per=-

turbaticn as a sum of elementary solutions of the form (3.7)

and ({.8), after snme refuction, Wwe arrive at the relation

2, an 1(n+ VN(n))t n
C.e '
=1

fE:AO+n a n
os) .. =i(n+ vi(n))t
+ 57 a" T e ( ) A
n—1 n wn

(3.9)

whert a,, O ani Dn are congtants to be deterctined by the

n
initial econditisng of the .;recifie porturbs ion to be {nvese
tigared,

Shocan et g omuth claosrer chysica) o ioture froe th
h ; Lo

f2rm « f the pevturbati-ns of 2o at the Troe rurfaca. ¥poenm

e oreete thot oo the Yasis Jlow free surfacco thne actogal steady
P T N T i s - } - 18
U e vl ity Wz ¢ L ean e roaregontad by wo o e '

Tl e e v E . - t e N g :
N R Y A L «  Aith i inm cinl oand sahstinating

$ -4 . . =
Droothe whewe S £, FR - Ui we hove
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n=1

f:’zf.de
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+*-

‘....Iﬁ

n=1

Ie
(1)
Ve h-ve

valuos )\ are

\a

Thus kn

diately that

to small porturbations,

(2}

The

r«,

tasic Tinw fra - sur

et
pe} N

(\

o

weitten an e pn

which arertifi 3

x .

tiwn %) fe =ote oap

st nrngalnr veloolities
T1aoad ar lse che igid
\f?%!lﬂv

gl " vacn"”

SACH

—~ o, n e
- wY + 22 Q n\/lﬁ)(-i} C.we
n=l )

"R "

n .
H(1) D, we

zhown in (3.6) that the

[1(n+ V) t-1n6]

‘e[-i(m- VR)t+ino]
{1, 10)
_[1(n- Vi) t-ind)

ml

D

[<1(n- /1)t+in9 ]

Pizetiggion of Sesults

'Stabllity of basic

“low.

only allowable eigen=

13 a pure imsginary and w

the basfic flow i3 neutrally

Anve character

anglar velecity

we may conclude lrimge
stablo whon subjected
of the rerturbations,

of the flaid particles on the

is uni%ty., In ogquution (3.10) we have

for the perturbaticns of the free surface

3

¥
¥

o

A%

suath jerturba’l-ng up to an arbiteary functian
this artitrarinezs, wa note that the porturbae

o & wove prttern whnses o-~ronents travel

yal t=~ {1 = vQth}, letreay They oithur
rtisles with un angular weloztty of
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{(3) raalogy with water waves.
The square of the linear velocity of propagation of

the perturbations along the free surface 1s seen to be
u

~

2 _ H‘gz 1il- g?n;

o4 = = s . & (1!11)
n

21
n {—1 + a‘-lf

-

The wavelensth y of thegse perturbatisns is

Delining the depth of Sl1ald from the Trec surface to the walls

ag howe hivo

or Jividing *hrough Ly a we hive
h:‘l' 1| ({-1:))
A a

o chall ccnstder the situ:tion where the ratio h/y
{2 maintained eonstant, while at the same time we mare the

dimpazionless dasth (h/8) very small, +e hnve from (:.12)

= 1 « L« tapms 7 B er ardes
~ -——Ln - »
'S . e J
hyriiTu on . "; @
% - te = i‘} :

which fa b i
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2 -l
th = g (;ﬂ!’/& .
Subhetituting in (3.11) we find
! -
2 (My
R — A= 8 :

’n Znh
1 +0 & |

g
N—

)
"

i‘-..

i
b

)y
a ~ e - -
3— tanh s;h . {(3.12)

[
o

-
-

3ut the abirve 1s the same as the sguare of the velocity of
propagaticn of a vater wave i~ a constint gravity fiold if one
roplices g by 1/7a (see [6 p 367])s  Thus we sce that the anal-
gy is ecnanlete in the 1imiting case h/a —30. This i: as we
might exprct siace for h/a very small the centrifugal forces
thraaghsut the lull are approxzimately constant and equal to
Y/a, and since they nroduce tha wavelike disturbances by a

mechanlism nnalosrous to thit osperatlng in gravity waves,

(4} Li-tting caso with b .

In the work atuve, 1P we lel the radius of the cylin-
driesl wa:l b rend o Infintey, we find thiat we have reproduced
in detall the rezalts of {11 in whicl the case ~f a3 hollow
vartex in an snafounted £l was troeatsd, Thuas, as nne mirznt
exi ety the Ii=itins 2g5n of a RoYluw vwortox hounded by ine
Fintrely Tareo walis 19 the zame an the unbounded nsllizsw vortex,

T ot Tt en P N L ~ -
T othe limitine rencess g - D opiving

*y

-h

this crge the welnciv 2f crops atiasn of waves on
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thé free surface 1s analogous to the veloelity of proparation
of desp water waves., This result can also be obtained by

1atting h/y—9 o 1in (3.12).

(5} Comparison with previous wbrk.

The results of this sectior have previously been ob-
tained by another method by lord Kelvin [5]. However, Kelvin
treats a tnrec-dimensional disturbance of the basic fiowe If
one conalders the speclal case in which Kelvin's three-dimene
stonal disturbance betomes two-dimensional, the results of [5)

and this section are ildentical in all detall,

IVe Gegerallized Orifice Flowg

Each of the [lows to be considerod in this section
represents the draining o0 an infinite rescrvoir through an
;ririce. The sides of the »rifice ure made up of twe s5umi-
infinite plenes inclined to each cther at an angle of 2r/n
radians; where n = 2P, p = 0, 1, 2, ... {scc Figure 3). hen
F =4 tha configuriatisn beccaes the orda mouthplece which has
been treated in {1}, and hence this -ecticn 18 essentiully a

Rencrallization of thnat rrablos,

Ae  Basds Tiow i143ticns

The Tizw An thc physical plune 1s mapprod 2nts a goce

tor <r the unit circle 1a the hodegrapn plone trunded by radll
tnzTined at s asgls of #w/n radiany t the prsitive roal

axia {208 Ployre &},
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ratld are streamiines we image the sector to cover the entire
unit circles The potentials of the busic flows for all n arse
siniiar. Each may be thought cf as being due to the presence
of a source at the orisin and sinks on the unit circle at the
nth rasts of unity. The sum of the strengths of the n sinks
{s *wire tha ctrencth of the source, The potential for all’

values ot n heccmes

n/2
£,(4) = 1ng —2 . (be1)
{w' = 1)
In teras =0 a new vorianle X = W
‘v Y
£ - % L0g oty (e 2)
(¥ -« 1)

provides a sintle reprezentaticn for the potential of all the

flows consilered here, We nmay now evaluate

enn L 4 ]
w(Z) = 58 24
2 7 - 1
and
e -
) = e ’ (ba3)
(L = 137 + 1,
Fo  Zupduarf-on of fre sorburtail s Siinclion
W8 shall now derly the oiuntiong poverning the jrrs

turhat.rn potontinl in srfer that (¢t rmay 3atis®y the wull

atroenmiing beoindary earnrfcian gmd o vae Froe surface conslitione

iy ¢ thess rergdrtatli-n auatliyng $n wrder o oobtala the

simiazibla pertirbal onse
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{1} 4all streamnline Hundary condition
The wall streanlins houndary condition demands that
the perturbation velocit, have no component normal to the
wallse This condition will be satisfied if

W
Tf 1s real on the wall.

We have seen that ln the hodograph plane the entire physical
flow 1s contained in a rector cf the unit cirevle of 21n/n
rallans, Let us transform to a now variahle n = iwnjzn In

the n plene the flow is contalned in the upper half ol the

unit sircle fql ¢ 1 and the walls have gone into the real axls
(sce Firure 9).  The boandary condition now boacomes

W
v iz real on q real,

From (?|6)

= w @ ¢, 41
= V'r = . f - il f, i N
W w0 W 2w w ¢n gy !
harnca "
V} . e -+
2 r 4
—= T - o Ln?m-ual qu 1s .cal on q real.
v (n® = 1)
fince the vuelfTictent of £, 18 renl f-r reoal n, we umust have
@
Lo fepell renl o the renl avdis, This i7pites that £ {2 a

23

!'*) Tyt sam,, EEINRETE S L4 ' 44
- e -r}, L:E ’.’ili::’.bs’:s ~:’. ”,"63!’»!“?'1?-{’4‘

o5
ia

. o 4 h 4 = .
titnr T oainesinenlar 4% wll cesular s ointe of the Flowe Tha
PRI 1 . te g . 1
ko ol T LD TOermaTar o In ey ) wyoenr Cop o e Yated alnaa.
Tooumtor e - r - % ’ M | . a - ik 7 ma s B oo v
partiy At nor ., Ay ndelssinlda carfuekned £la srge nge oante
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have an isolated singularity at the origin, llence feﬂ can be
reprezented by a Laurent series in |q| < 1. Integrating term-

wise, an operation which preserves symmetry, glves

T

Z

= 2¢ log 4+ Fig) - R SATE [ < C (bole)

~

J‘whnrﬂ F(n) 13 an analytic function of g, i.2., has a Laurent
gorices, Hith the cholce of argument above r2 is a gy metric
function of n. ‘e note that ¢ must be a real function of time
in order that f, may satis{y the condition B{b) of section II,
namely const.ncy of clirculation,

The tasie flows for all n have‘symmatric velocity
distributions.s Hence the perturhations in the hodosraph plane
ar, aftcer the cysie ry proserving traasformation U = wn, in

tho & plane, can be deccmposed into syomatric and anti-symmets

- 2

ric componentss Exprossed in the n plane, (n = 1(1/ }, the
L plane sympctry relatinn

s Ts

& i b4

£, (0 = 2 r; (7
beee=. ¢

2 ]

£ (n) = = £, (=79} {.9)
ag mny e ozeen I Steure T, Ciote tht the 5 and a gupoerseript

notatt ooostitl vl to the gy retrle and antlegsyesotric oome

- oA -~ . L S .- - - - .
r‘."‘.":"f.'_‘; xt f in - - ;i;,s;c wit fiave: izift,ﬁ'idf dﬁt"‘r':in(ﬁ’j that

$ et U2

€. s n sy=reorrle Tugeting of ny honcw

. ——
.

’:i" 1}) = o.r

Ty

ﬁ("’ '33:
'3
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Substituting this relation into (4.5) shows that
s

s
£2 () =2 15 (- ) (44 6)
Thus f_ represents a { plane symmetric or anti-symmetric per=
turbatinn dejpanding upon whether it is an even or an odd funce
tion of g respectively,

The te:rm
2¢ log n = ¢ log { + iex

i3 symmetric except for the antiesymmetric constant ice which
can be absorbed in tg.

{ behaves like qa. dence an even function of n with
a Lauront scrles development (a serles contalning only even
péwers of n) tecomes a Laurent series in { containing all
powers of L. On the other hand an 244 function of n having a
Laureat series (a series containing ~nly ndd powers nf 1) laoks

"

1ike clf“ multiplied by a Laurent series containing all powers

of L wh#n oxpressed in the ¢ planes Thus ve can write

5 11
f, = 5+ 0,
-~ b -
Woera
= a L5
= ¢ l2g [+ F (%7}
and /
& 1/2
f‘\; = r‘ : sa

. b L . -
dnore FUoatd FUoara anyiytic Dancviong of Y, f.e., have Laurent

1~ 3 Y " ; ed B -
A% in gectian TI7 wa shil!l qeogsme oo famtinnal “arm

Loy Da

1
-~
g
o
a
Rl
'mt i
hd

tareninneg of §

L
£
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f. = G1 e + G2 e . (4. 8)

Symetry of the basic flow relates G, to Gl' The symmetry

relation in the hodograph plane (sce (2.19)), after the symme-
try preserving trans®ormation { = wn, bacumes

Gg (g} =+ G
S0 =2

+
i

(g, (4. 9)

Ceonsistant with equations (4,7 « 4,9) we can represent the

synmeteie anl anti-symmetrie components of Gl and G2 in the fora

Gi = a lag l + gs(()
Gg =a log 4 + .g?(—c;)
(44 10)
6y = g*(2)
65 = - )

. s -1/2 .
wiera g and [ / ga are analytic in I(I <1 anl ais a com-
plex ~~nstant., It can easily te verified that the forms as-

susedl $ta (L 17) gatis®y eguaationg (o7 - 4,9,

{3} Fres syrface ronditinn

TRa Tess nur-{‘-‘nc. AT T I 0 ST SPE T X Y 1r e lcieaen 4 {1 YEN
. vp% . - P Wme £ e - 5 s e A ag ey wd E - § “ch A A -8 a 7
BT - 3 = .
N faiiV}E = I [G(w)) on W W o= 1,

ATter crangforming ty the [ pline “his

(¥

sniition becomes

LG0T E L B,(0) L=

wWhere wo now understans L},!Q be *he tragefurmed A1 {erat i}
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aperatar. Now using the symmetry relation (4,9) to eliminate
52 we o tain

]
Ly, 6] (C)} Ly [63 oéy].

The d4ifferential operator LX in the { plane is found

to be
e % e
G(r = - :
[ (7} ZnCh \C T ;?Ct t \ 71y
/ 2 2\
I SN )1 : (411)

2 el 4
\Z(€ - 1) WS - 1]

cince the symmetrlc and antie-symrrric components
satisfy the hLounlary conditions iniependently, woe can substie
tute tihe Corms for Gi and G? from (4,10) int. the above and

find the following functisnal relatlons

L - 1
r . s -
Za -:-T-% + h (() = <q %——— + hs (l) (k.12a)
1S + 1 (
4
K (Z) = = h () (4. 12b)
4
W . uro
3 3
ey = L fer) ., (4. 173)

3\
8 Know thet in 1ll¢ i « vei/e,a ;
a8 KnoW Thet in [LIC 1 &7 ani ¥ ¥ oara analytie

Tuirt: ns of I

4 L

«tth this in zind we can, by mrani of o ia-
tion (Lo1y), “etermine that tn ir] ¢ 1 ha(K} tchaves 1ike
P e pliet by an analytis Puneiten of ¥, while h(7)
betavez like an anklytic funsticn of 0. For nunvenlence we

may ropreégent trege funetione in the fHllowling minqer
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(L
N
g
~]
~
ny

a - L - b Wk
n0) -8 d S oa 2T (4 14a)
(1 pod K=emD i(n - I)Qj
= “1k
h*g) = - 2a L1 SRR S (4 14b)

kzmoo © | A2 - 1) !_j

whare the constants a, and b, are unknown.

These forms have the bhavior demanded above and in
aditti:n satiafy (k.lza) and (4.12b) termwise. Our aim is to
fin1 functions 3({'.) satisfying the relation (4,13} with
ha(C) having the forms ¢iven in (4. 14a) and (4.1%b). To do
this, we rezard (4.13) as an inhomogenenus differentiul egua-~
tion fecr gg(f). We note that the inhomoscnesus term hg(() is
known {n fora -nly nd hence the solutions ggiﬁ) will retegin
some rhitrariness which, for a glven problam, »ught to be de-
termined by the ialtial cenditiong,

Kaowing gg((), Gl and G, can then be found from
(441%7), thus tatermining f, and all ~ther perturhation quane

titing,

Co  Dtnwr focppiacy Tonlltions

The restricti oy unleh mart be placed on the rolu-
ticrns 7 the ceriurbation e uat’ on tn oorder that they ooy

Saticfy the rerainin® =runinry oanditions ars darived in

. . Lyt . . * T R N AR
Fas _“9‘- EV 4 ny ; v in bﬁ'i-{ T s.ls : Fs "ﬂ'ﬁ

(1} The wire 0 the prifice (Y = « 1),
THe frea gyrtars shall e ntinue 14 sriginate Yrom

the sodge ol the Srifizoy lewey 2, ° 7 thery
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gé(“l) = a, gé(-l) = O,

(2) Upstream infinity (£ = 0).

(a) The perturbation velocity w, goes to zero.

0
0

n= 1 g” and g1/28  gre regular at ¥

=
'

- 2,%,8, ... g° and K'ljaga are ragular at {

(b) The pressure perturhation p, shall be zero.

l s

- ~1/2
¢ lg® ana g"V/%e

are regular at { = O.

(3) Downstream infinity (£ = 1).
#4o disturbances originating at downstream infinity

shall be propagated upstream in the jet
=\ _8 -\ &
(T -1)"g7(1) and (£ - 1) ™ g(1) exist,

Ds ef‘!”u'jfls Qf thp Pf'rturmi.;W

The developmont of the anti-symmetric and symmetric

sslutinns of the perturtation eyuiatlon (4,13 is carried out
in Aprendlx A, part II, #e shall hoere use the results of that
wore,

£1) Antlesyrozetric solutlicns.

poeneral fzem 57 the anti-gymretric solutian of

the o

the rertarkatisn e uation vilid about U = € can be written as

a ilnoar conbinaticon of the tw. complesestary colutions plasg

& turtt~ylar (#Yerpral,

F1y T
1& . :i s— L] T 'ri 1 ( ¥ ) .q-':i' rv"“ a»& H f ol
§. . N 1.0 + T a e L. . ( L 12)
" < - ; rooHer o
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The inteper R uzed to describe a solution ga is a

number cliosen so that E is the [irst non-zero £? appearing

in the :»litinn, Admi-sitle valurs of R will be determined
(1)

by the application of the remaining boundary conditionss K
Al K(“) are two linearly independenv solulicns of the homo-
geneous equation developed about the pnint { = 0. The nartic-

ular integral is represcnted by the tarms

o
7 n&
£ 5 T

whare the goeneral toerm
.1 .8
Er “Rar
is 8 particular integral of the differential eyuation when the

. : a
inromcgenenus side o»f the e:uation h ({), conzists of the

single ternm

- 4 Tiisr
-‘*—17* or 1o

AL - 1)°

s . a .
(ses (‘+sllball. ng, A and L? are arhitrary sconstants.

qtooan (vo1%) La v 34 ur 4 the nearest sine
galar ;aint, teee, within the uait ~ircle, lnce brundary
eonilutions w0 hve vt o= gpnided nnt ooniy withia sut also at
Folntz o othe wundt cirale, we qunt Tiat zaluttons valld oat

triege oodinrts, Vo 0 this wo stutry the Inileial cguation and

hecite the Do U the o oy lementary 1t oan o roprlate to

tho 7 oint I gpstion vt rthan rateln trnis Tapm L F “he o 855) i.n
Wit t™ho Lithonoa st oant ke o opicin Cr the proancss of analytle
Tosrt.maavios a od Dovns Vor the portiealar integzral iy then
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be found., This method must be ccntinued until we obtain solu-
tions ancar all points at which boundary conditions must be

annslied,

(2) Symmetric solutions.
The zencral form of the symmetric uolution can be
written in s manier similar to that used in writing the anti~

sym-etric zolitions Thus

g8 _ 8 (1) s .(2) s 52 p
By = Ay K77+ By K77 + K' 4 == E hR+r (44 16)

whero the additional term Ki is the solution for a particular
integral of the differential ejuation upon substitution for
the inh-mogenesus pa~t of the diflerential equation oaly tha

torm -2¢ L-J- arpearing in expression (4.14d) for h® (C)-

E. Acplcation of the Boundary Gonditions to the Solutdons
The detalls of applying the boundary condltionsuof
soction & to the solutions of tho perturbation eouation are
carriod out In Appendix A, part III., The results of this work

&ro 20llaected below,

{3

(1) Al vrntrd

The yaluey ~f thn Indox B ownich are fouand to be ade

1/2 -1/2
! g? 1/ gd

eis.ttle o700 urcon whwther ve tlemand thet [ or [

heo Peowilgr st Lo~ D o osttculated In o houa ry conditian

.
wholh T7 g7 e osular st o QO we may have R = 2, 1, 2, 3, sae
dntle wieh 770 e rapulir Homay t2 ), 2y 3, ees e (e we
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demarxl that both thc velocity and pressure perturbations van=
ish at upstreas infinity (boundary conditions 2(a) and 2(b)),
we see that the value R = 0 13 not admisgible even for n = ls

With these values of R we can meet all boundary cone-
ditiong by eati:fyi;g an more than three linear homogeneous
equations in the unknown coefficients AR, B and E&, and by
restricting the values of )\ so that

A} g2-2m+r

(2} Symmetric perturbations,

Analogously in the symnretric case, demanding that
gs be regular at { = O gives the allowable values of R as
R=0,1, 2, 3 ¢se 4 while demanding that(;'lgs bs regular
glves R =1, 2, 3, ¢so¢ ¢« As before the pressure cordition at
upatrean infinity eliminates R = O, This boundary condition
also deteramines that a =z 0.

Now, to meet all boundary conditions we must satisfy
no more than three linear homogeneous egunations in the un-
Knowns Ag, Bﬁ and Ei. In this case the restricticn on \ be=-

HEL{2% 21 =208 +r),

Fo 2%ability of the Sagle Flow

(1) Jeability to anti-syrmetric po-turbationg,
de nhave Trund that the arclirarion of sur brundary

Itizns dexands that we satisfy thrse linsar homorenaelnug

) - 4 -~ « * ta 3 i a -
LTINS 17 the Unanowns Ay, ?’}{ an! El’" In seneral we are
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assured of a non-trivial solution if we have more unknowns
than equations. Thus we can take as a solution invelving four

unknovwn censtants

a _ ,a (1) 8 ,(2), & .a.,a
gR x AR K + Bﬁ X +:E: E Kn*r ’

Yith this soclution our restriction on \
R (A} <2~ 2R +r)
with R = 1, 2, 3, see , implies that
RL{HS -2

which would indicate s:able flow,

There exist any number of other possible solutions
g; containing one or nore terms E: Kﬁ*r in addition to Eg Kﬁ.
Any of these will make R{ {k}~ even smaller than -2,

There is one snecial case for vhich a greater R! {x}
may perhape occur, [If it 15 possidble to satisfy non-trivially

the three nomogeneous eguations with three unknown constaats,

thoen the solution

, (1 i
P A P R
"N K| A a0

{5 admiszihie and plves

- by p - 'S 5 - - - B - = .

Phis rerrurratl o s =2l g noeutraiiy statie ar ostglhle nertutre
- ) < - § 1~ 3 B o w g P - e py s S L F Y

YTl . Taattin will he llzoogeed vartier in osoction Vi
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There 1s another possible type of solution g2 which
gsatisfies all boundacy conditionss This soluticn consists of
the complementary solutions, l.e., Ei = 0 for all r, and there-
fore hg = Ly [ga(()] = 0, In this case the values of M are

resiricted to

A== (24 +1) + \/’é(exa.l) N

n

O’ 1’ 2’ e s

1, 2, 4, B, ..

H

wilch zives RL {){} < 0 for all n and N except N=0, n = 1

for which
k='l:\/5.

{(2) JStatility to symmetric perturbations,
In the case of gymnetric perturbations we have to
gutisfy thre~ lin~er nomogenecus relaticns in the unknowns

Ag, B; and E:. Thusz, 17 we take az a sclution

s .3 (1) s (2 L g.5
== K a +
&, ° Ay s B KT 1_%6 RIS

pur res'riszt-onn A A\

xd L1 - 2(k + 1)

R AT
Ionorhfn censme if we consllier the jorribility of the

. - R . . Fa. b . . [
v Lo e o0 s o netriving satlation

el 5
£
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we Tind al {x} -1

which still indicates a stable flow,
| As in the anti-éymmetric case theres exists the possie
bility »f satisfying all boundary crnditions with the com=-

plementary solutions alone provided

kz-zﬂiz";{ N=1’2,3,0|'
n=1,2,l§,8,.-oo

This gives az,{:x}..:a for all possible choices of n and M.

Ge angh;ama

Usaaily in the solitlon of an eigenvalue problem in
an infinite domain one cxpects to find a cone-dimensional con-
tinuum of elgenvaluecs A and the set of eigenfunctions corroge
ponding tc these eligenvalues, The results »2f the present
analysis have only given upper bounds on the Rl.{k } and hence
A\ has only been rostrizted to ldia in a3 portisn of the coiplnx
siane,

ALk one exce- tlon, namely that 2 the Horda mouthe
vivee (n = 1), the acrlilicni-n o0 *he “wuntary conditisns to
the s3t:t.ong =0 “hie zertarbavtian fjuaticn hig s2Wn that thers
axist no ronetrivial al-issitle perturhations with 4 {K} v Ca

>

L » p - - . - - Ad -
wer Drxnciwde room o ochig vt the coaqeraliecd Lrifice fiouwn for

T 3 F . -t ¥ . OF Lk - - . -
nor O, by Booee aTe ztitle wken zubfocted t smal?) o pecturnae
» a1}

-~ o

1Y

- * E . - b .- P S b ew & ¥ B _
[ *he zaze 2 the Dordn meptihplecse there fdoos howover



315807/2 37

appear to be an admissible perturbation, composed of only the
complementary solution of the perturbation equation, with

AL {A{} s> 0. We note that this unstable perturbation occurs
for only one isolated value of permissible A\ namely A\ real

and A = - 1 +¥2, Since we have not been able to determine

a one-dlmensional continuum of eigenvalues and corresponding
elgnefunctions, l.e,, elementary solutions, it is not quite
evident whether this unstuble perturbation would always appéér
as a component of any general perturbation thus rendering the

Borda mothplece "low generally unstable,

V. Equal and Qpposite Jets

in this section we shall consider the flow made up
of twe egual and opposite two-dimens!onal jJets lmpinging upon

cach other {see Figure 7},

As c F1
Thoe complex potentinl o the hasle flow may be found
froe an investigation »f the nature of the flow in the hodo=
graph piane (s¢e Flgure 8)s The Tlow may be ®iought of as
Ariging I'rom the prasance of twe gouress at w = 2 1 and two
sinks at w = ¢+ 1, all ~f the sazme ctrongth, Witk this in aoind

we can writs the pntentlal a9

£ (v} = 1o Mo, {%1)

r4
T o+ 1
o Svenfioente yu shall =axe a transiore.-i{-n
e
"3 &



35807/2 38

In tarms of the new variable [

£,(L) = log %fiu% . (5.2)
Then
wl(l = T

(- INT + 1)
| {5¢3)

-2 1)
(- 1T + 1)

w ' (%)

B» Derivation of Perturhation Equation

Thn di’ferential equation governinz the perturbation

potential will be derlived by applying symmetry considerations
and the boundary conditinn on the free surface. All other
boundary conditions will then be applied to the solutions of

the perturbation differential equation,

(1) Symnetry and analyticity considerations,

In tho basic flow, as rerresentad in the hndograph
plune, the tmesinary axis 1s an axis of symnetry, We shall
first decomjpose the wvelecity perturbations Into componrnts'
which arce zym ctric and enti-sym —trie with resprct ts the
imerinary axise FErpr:ssed mathesa'lcally ar a ~oundary cundie

tizn, w¢ have cither

V.,
. % 5
tage tal = ol on imaglnary woaxis £ar the symretrie
caze, St
.

Ao e b
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raspect to the form of the perturbation potential.

39

For con=-

venience we shall define a new variable v by the transformation

v = iw.

e
“

Since ¢ = w™ We have also

From equation (2,6) we have

W
2
w =Yy

whicn becomes in terms of v
W

e ]
-< = X V.
v urPV%;

Yoon substitution we find
< P
ot CA S DT C A ¥
W Ly 2y

with transformed houndary conditicns

W

. 3
case (a) :f real on v real

W
caze {b) %
W

Ly wrenrpto

pure imaginiry on v real,

functizn »f v

(5.%)

on v real,

e
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ivi <1. We shall insist that the perturbed flow also be regu-
lar #t all regular roints of the base flow. Hunce after inte-

grating f2v’ which operation preserves symmetry, we still havs
case (a) f.(v) is a symnetric and regular function of v
case (b) fz(v) 15 an anti-symmetric and regular function of v,

The basic flow has a symmetric velocity distribution
about the real axis and the results of section II allow us to
decompose our perturbations into symmetric and anti-symmetric
parturhations with respect to the real axis 1n elther the
hodograph plane or the transformed { plane. In all further
express.ons the sy=mmetric and anti-symrmetric notation will

refer to properties in the 7 plane.

Case (a) f,{(v) a symmetric function of v implies

£5v) = T,(%). | (5.5)

The cyametry relation in the ¥ plane states that

: T
£3 (1) = 2+ £5 (0.

This terozos in the v - 1 piane
5 )
2 {v) = &« 8 (o v .
- dhen

. -

Ay plytg (5070 o this exprecseinn plves
5 5
4 . N
:"': “{V.‘f = : f% {= L

[
Worse o 0 orixy aypee trd - op gt loavr e epls racturkat(on ta
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represented by an even or old function of v respectively.

Bince ve know f,{(v]} 1s a regular function in Jv| < 1 we can

write o0 n
£3 (v) = 3 a,v
2 n=0 & {5.6)
2n+l
fg (v) = .%x bnv n
' n=0

e
Since v and [ are related by { = - v° we have
o

n=0

N

3 (Q) 2 t"

(5.7)

2 (0 = (M2 fé b
ns

fmplying that i'g (0 and ('1/2 fg ({) are re:ular'{'unctiom
Of ( in iC! < 1.

w@ assume the usual form for time dependence

St

(C)e\t + G2 (e,

[l %1
o e

a _
I'z--G

Gl and G,)' may be rolated by using symetry of the

haynie Tiocw viving

s s —
G2 () = G2 (Y.
< i

Gamstsrant with the zbove cqnuaricns, we may deline

[

51 and 3. in tho following manner

6o = p° (L)

1

57 = g3 (7 (7,8
M e i
GE s gt L

o
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«1/2 a
g

whers g’ () and ¢ () ars regular functions of { 1in

Izl <1,
Case (b) Applying siamilar arguments we find, omitting the

detalled steps,

63 = g° (O

63 = & @ (5.9)
G% = g (z)

68 = - 0

where now C'l/zgs (¢) and g® (L) are regular functions of ¢
in 1¢] <1.

(2) *roe surface ccndition
In a manier =imllar to that of section IV,'the “ree
surface boundary condition demands that the sym-etric and anti-
syaretiric perturbations of equu-ions '5.8) and (5.9) satisfy

an inhozogenenus diffcrential equation

H S
Lo le% (COT = 1Y Q)
A
where
n® oz = nd (1)
" (5.10}
RS AN

- h ("“\3 [
L 4

The S Tarential e i Tor g7 (L) and gl (L) of 2x2ze (b)
Ty

e e v icmal o in

- St e, = A . - [ .
v T emential crernt e L4l the X plang teoomes




Ly 6%y = —fr»{Gcc + Gﬁ (E%— + 7 3\1 - E_éﬁi)

2 2 .

)
(23" = :

/
+ G (trg (S R (R R TASS

- 2&11‘2 (5.11)

{3} Fora of h{({)
Cage (a) We know ('l/zga and g3 are regular ia 1l < 1.

Subgtituting into

| H g

Ly (g (7)) = h™(Q)

we fint that h°(7) 1s a ~esular faaeticn of ¢ and h®( %) equals
(}/2 multinlied by a Onnet nn of { with a sinple pole at

Y = 0, rFor c¢anvenience we shall chonse

x e 2:r
(L) » srd X 8 'fi..:_l.) \

-

(5.12)
n3() > b !—t/i;;.l )21 :
Tl T [ﬁc RV

where a_ and b, are unkiown. These Torms have the bhehavior

dezain.ed above gand fn addition catisfy termwise the functional

relalons
s 9
a- i
n*(Z%) = + r® (4,
y
]
Caze (1) _4-ilzr argaments Yy otnis case lead ‘o the
£ nwing ¢loaf . .7 hixﬂ
2 v - LA i:’-— 15)5.
i iy hedE SRS 3 - £ DR S
v e 1 o e T sy e Y
. S r e Pn -
L'ﬁl Ii
1 b T:F g!‘_ii
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C+ Qther Joundary Gonditiong

The remaining boundary coniitions which the solu-
tions of the rorturbation eruation must satisfy are derived
in Anpendix B, part I. We all merely collect the results
here. They are } N .

(I)Iaﬁt { = 0. ‘e insure the previoucsly determined be=-
navior of g° ani g® by demanding that |

case (a) g~ and Cfl/aga are recular functions of [ as

{. “){:“l
. -1/2 s a . .
caze {(b) [ g” and g% are regalar functions of { as
{—30.
{2) Upstream infinity (£ = 1).
(1) The parturbdation velocity v, vanishes
' s
case {(a) and case (b) 1im (% - 1)g2 = o,
g1 g

(11) The perturbaticn pres.ure ., vauishes.

5

casze (a) and caze (b) 1im g2 = 0.
L1

(3) Downstrean iafinity (L = = 1),
No disturna-ces orogincting at downsgtream iqafinity
shall te propagated urstocan in the fets,

. _ - 5
case (a) an! ca.e (v} itm (T« 1) 2" exists.

{1t

Do Jzzihete Gogutisng oF the isprarhatlong 83407100

rr etaliled yorlvat.on 27 the lut.nng of the pore

& N ~ 1 &
gurbarian ogds 1ong (5. 301 L careled agt tn Sorandiy B
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II!. The rssults of this work are used here,

Case {a) (1) anti-gymmetric solitlons.

As in section IV near { = O we may write the complete
solution cf the differgntial equation soverning the antie-
symmaetric perturbations as

@ _
RS R L T (5.14)
=
vhere K(l) and K(2) are the linearly independent solutions of
the homecgenenus equatlon developed about { = O, and the terms
in the sumsation represent the particular integrsl, The in-
dividual tarms of the suaration E; K§+r represant the sclution

for a particular interral with the irhomozeneous tarm h® ()
in (5.10) rerlaced by the single term

7k e L<c .|

(see (5.12))s The significance of the index R, which is an
integer used to denote the s2lution gg has been explainad

previously in section IV,

8a Cosmnmbmd - ) 4 mmm
L W W UJ Bt b AN - e A i
The onamplete symeiric zol1%16n can be written in
the form
A - L
s (1 s L7 < o3 .3
T A K + B X + o .19
EF '%i P .4__;; “rotger (5, 19)
(12 L{2) , 5
X arxt K arg 13 Jefltned in {7,100 and the ters Lt aﬁ*r
)

Y

3;7e878 37 Yhe sollitaln 20 8 pefticular Lnotegrsl whon (L) in
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{5.10) is replaced by the single term

Bar [Li,__ll_ :
(L + 1} J

R+r
l

(see (5.12)),

Case (b) The solut.ons for the symmetric and mti-symmet-
ric solutionus of case (b) diffe: only in minor detail from
those given aﬁove and v{1l not be wrltien explicitly, They
may be “ound in Appendix 2, part Il

E. Anplication 2f the Boundary Zonditions

The -‘etails of apnlyinz the doundary conditions to
the syrmetric ani antiegymnmetric solut'ons of the perturbation
e uaticns for case (a) and case (b) are carried out in Appen-
dix 8, part Ill. +We 3shall exanine here the significant 1e-
suits of this worke

We note first that syretric or anti-symmetric solu-
tions, made up of only the vomplementary s~lutlons of the
perturdation eguation, can easlly be shown to be non-trivial
cnly 1f

at{xj < C,

Thias resalt 2~1iz far imth case (o) and case (by,
de zhall now llscuss the applicarizn of the bhoundary

c.ntitlions of the s 1t izms 27 the re=turnetion e uatinn ~one

s

talaing ter=: Tram the rner~tlcular {ntegral,

I .. . £, -t 1 .
wiAS LAl Va7 Aantliezyomal:s Loosuiltloanz,

ALpising the Soandary rontition a1 L = 0 ylelds two
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linear homogenesus ecuations that must be satisfied by the
wnknown coefficlents A;, 3} and ED.

- As a result of applying the boundary condition at
{ = - 1 ve find that A and the index R must satisfy the in-
- cquality 2R+ hL{A} - L
The boundary conditicn at { = 1 specifies that
‘u(_l) = 0, A consideration of the behavior of the various
torms of the solut.on shows tha* the boundacy condition may
be satis~ied in several different manners depending upon the
relative macnitude of R and R{ {x_} « If we exanine all pose
sible 3ituations, noting that at the same time the inequallty
between R and R{ {k} y found from the bdoundary conditlon at
L = = 1 must alvays hold, we find tha: in any non-trivial sol-

h ]

ution capabdle of srtis’ying rll houndary conditions
s {x} <o,

(2) Symetric soluticns,

' In the case of the syqctric sclition, the boundary
condition 2t L = O will be srtisfied provided AR end Eﬁ
satiafy a sin-ln !fnear hSomosenesus eyuatione The coofficient
B; is ns yot arbitirary,

The {ncquzlity Between 1 oand Rif{k'} resulting from

applying the mranddary condlidion ~t 0 = - 1 15
2 e #E AL <1 - 2r
. &4 2 -

wWherfc T {s th. gretzgt v fap w. ich E

1s nct ~cro. A3 yot
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the toundary conditions have yielded no information concerning
the least value of r_ . for which a solution will be non-
trivial,

Proceeding to the boundary conditions at { = 1 we
find we must again investigate several possibilities depending
upon the relative maznitudes of R and Rl.{kj}. A8 opposed to
the anti-symetric case, we now find one possibility, with
rmnx = 0 and the coefTicients Ag, Bg and Eg satisfying a lin-
ear tomogenecus equatlon, for which there exists a sclution
Mith 0 <RI {2} <
corresponding to the index X = O, We seem assured of a non=-
trivial solution fcr the coefficlents Ag, Bg and Eg since we
nust satlsfy cnly two linsar homogenesus a4 iztions in these
threo unkacwns {(one arising from the c¢ondition at { = O, the
other from the conditicn at { = 1), All other possibllities
of satisfying the bruniary conditinn at % = 1 vield no f:rther

perturta*tnons with R{ {\ +> O

Cyoo “raocecding us in case {a) wo Tind ns aimissible

symotrlce or o antlegyrotiric jerturhatisag with i {Xj} > C,

o ~ . L ¢ - - I N -
Fo RilaadSe d g 2 the LtaliliRY Sf %

N 4 r . T — — _— s
L5 tnothe rrowicys frotlem Sur o analy

¢4
)
-

s

5 hag st 08

vy

tatlished 3 ne-tlzens: inlt z2oatingas »f e.pnevalyies A with
eeprecsraaling 2irenfunetiong, but rather nas oaly sunceaded

e

ng e range ol the adsenvaliie Nty oa onortion of

;
#H
‘n-‘
19
<
“¢
] ¥ ]
:
g
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The investigation has shown that non-trivial symmet-
ric perturbations vith 1 > Ry {k} > O exist in case (a).
8ince this range of A\, with positive real part greater than
gero, covers a strip of finite width in the complex )\ plane,
one mizht expect that a reneral disturbance would be unstable.

We note that case (a) corresponds to a flow for
which both the steady and perturbed veloclity has a zero com-
ponent normal to the imaginary axis in either the physical
plane or the hodograph plane. In elfect case (a) may be
thought of as the impinging of a finfite jet on an infinite
plate or wall, It wi'l be cof interest to compare the results
of cass {a) with those of the next cection which will discuss
the stability of a finite jeot impinging on a {inite plate,
Of special interest will be the limit case when we perait the
ratio ol plate width to jet vidth to tend to infinity.

cerept for the unsiable perturbation discussed above,
our analysis hos shovn that all other admissible perturbations

have A4 {k} < 0 and hence e stabie perturbations,

VIi. Jet Impingine on 3 F.nite Plate

In this secti~n we shill consider the stability of
a {low over i obrtac’e. Tne pacticalar “lew choson ts that
of a jet er.oriniting at Iaftatty (3 inzing ancraally an a plats
of “ialts Witth {ar Slelre 9),  Auymptotically, the fots laave
ing thn upp- o 8wt lov-r o faeg of the plate Securmy stralght

¢ aqm Y - 1 -
Jatg nclin.d At szl + 8 ¢t~ th Sarlisnntul,
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Initially the authors intended to consider the stab-
1iity of the cavitated Tlow configuration produced by a finlte
plate placed normal to the free stiream direction cf an origi-
nally uniform strcan (Helmholtez plate problem)., The elfect
of the Tinite plate 1s to leave the originally unifora flow
at upstrean and downstream infinity unchanged, Iﬁ the hodo-
greph vlane this results in mapping both upstream ani down-
stream infinity into a sinzle point and one is faced with the
problem of npplying, at a single noint in the hodograph plane,
boundary conditi»-ns pertalaing to couzletely different poalnts
ef the jphysical r~lane. Srom a mathematical point of view the
effect 1z to give rise to ai: irregular -<in-ular polnt in the
perturbation diflerential equatisn,

In trytnp to [ind --lutions to thic problea an
attempt was nnle to dif“erentiate between urstroam and downe
strean infintty by artificially =eparating slizghtly the cource
and .ink rejr-contine these points in the lodzepraph ;plane, It
waz then r-ali-ed that thie c>uld be drne in 3 straight fore
ward ma,ser ny c¢onclidering the li-iting casce of a much more

guanral rroVlex, namely What of 5 JoU fomoinging ona {inlte

nlate,
Ae S in FilLw Sointiong
PEICREE AN £ IS Aeln Tiow potential iy =ost rendily
Torormin st (- e g RomYoam ' ':'; S Cedre 10), «ore the
Tlaw rLy e teoooont T oz toewinge wrilon {oomotha grioscnce of
duet ST L atw s o+ 3 oanl sinaz 37 atronpth & on the untt
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circle at w = + a and + a (where argument of a = 8, the jJet
tnclination at downstream infinity). “rom the above, we can

find

2 2
£,(0) = log ——=L (6.1)
(v - a%)(w2 - 39)
~ After a transformation { = v2 the potential in the

! plane becomes

. 2 ,
£ (0 =1 AL=1) 642
of® = 1 L (6.2

where b = 52. Then
O - 2g L2€ D@ B - @ - VK - B+ - B
(€ = 1)L - b = B)
(643)
and
W' (g) = 2 - 4 ’2(("5)2(&-5)2-((-1)2[(tb)z'v(;-s)j}
(C-l)((-b)(ﬁ-'ﬁ){Z(C'-b)((-3)-—((-1)(((-!:)*((-3)]

(b14)
The asymptotic inclination of the downstream jets,
a3 characterized by & parameter § = sin 8, can be related to
the dimensicnless ratio (4/D) of piate width to original jJet
width, Tnis can de asccoaplished by considering the integral
9(%{3) ‘
1z = 3 (%).

Fr e

C

In ter=a 2f & "Ef?!‘lr?‘. varlante s wa onn write

-
fz

Tus wé hava
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#(a/m) -1 .
d
= =1
dz = .{5 () & = § .
Now using expression (5.1) for £,y which invoives the unknown

sink position a; ve finally arrive at

%:%[1—\/1-32] 4.%108 [%—-}-%]o (6.9)

The limit cases § = 1 and B = O correspcnd to the
impinging of a jet of finite width on an infinite plate, and
the impinging of an infinite stream upon a Tinite plate
(Helnholsz plate problem) respectively., These, in turn, corres-
pond te =aiking the sink position a avprocach i or + 1 respec-
tively. The steady state form of the potential, (6.2), in
these limiting caczes goes over into the known form oi the
potential with 4/D = @ or O respectively, Care must he taken
in arriving at the proper limit Jcr the Helmhnltz plate prob-
lem since no simple scurcs sink configuration results, but

rather cne male up of a quadr:pole and a doublet at w = + 1,

Jde  Porivation o7 the Ferturtation Sguation
(1) .al! strea~line condition,
The D unta y condition an the imarinary axis (map
f the £late] in the w glane {s that the perturbed flow have
no ~3=ronent moraal to the arxis,

ac 2nni) transfhrs froa the hodacraph plane ¥ to a

now slang oty @misis Cf the pelation

n = 1 4,

1
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This trangformation merely rotates the image of the plate onto
the real axis in !n] ¢ 1. The boundary conditicn will be

satisfled if y
:? is real on n real,

Evaluating w2/v, we have that

aln + 1)(n2 + BY(4% + B)

£
= = 2
29° {2(q2 cB)(n? +B) - (0« 12 e b+ (2 s B}

must b real on n real, Since the coefficient of f‘?.‘I in the
exprescion anove is itself real on g real we Infer that f2q
must be real on 5 real and hence a symmetric function of ne
The basic Tlow is ~verywhere regular in |gql ¢ 1 from which we
can dejuce thsat faq 13 dcth 2 regilar and syrmetric function

£ atin [ql <1, After intograting f, we {ind f,(n) is a

2n
regilar and sy=wetric function cf 7 in ig} <1, 1l.e.,

£.(n) = £,(9 . (646)

(2) OSy~=etry and analytici{ty considerstions
Trno tasi: 71w io sy==-tric in the { plane. Henco,
woe Say decizmytse the rerturhatitas into sy etric and antis
syyetric oonjenentse  Jywootry i the [ plunc, which {5 ex-

precs-d by

Vsine tha relatinng {5041 we have

Tw -
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8 s
£5 (n) = 2 13 (- g, (6.7)

Thus a § plane symetric or anti-synmetric perturbation is

represented by an even or odd function of n respectively, and

we can write .
Zn
fs = %‘. anqd

o) 2n¢1

fa =z. b n .
0 n
Since { = - 9° these relations transform 1a ths { plane to

ER{ed)

-

- |
£

"

1/2

LT E §)

£

wnere % and P® are regular “unctlons of ¢ in | < 1.

We shall assune the form of the f5 time depcndonce

Yt

as
£2 = 6,(QeM « gL,

In sddition ve lnow thnt, duc te symnetry o7 the basic flow,
we havy the rcelation

] g -
¢3 (L) =+ ¢¥ (T (7. 8)

Consistent with th. atmys wi pay define

6Y = g%(Q)
35 = g3{0)

- (6.9)
o) = 2O

&

(%]
n i
L
[]
]

[ty
Lol
~)
-
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where g° and E’l/zga are regular functions of ¥ in |Z| < 1.

(2) rree surface bhoundary condition

for a symretric basgic flow the free surface condition

- { s (%)) ( a ()] 0)
G = G - ‘60 1
Lk 1 LX 1 4 {

The form ¢f the differential operator L\ in the [ plane is

20(%=1)(L=b)(L-5) [ G

(6(0)) = = -
R 2(%-E) (*=B)-(r-1) [(g=b)(¢-B) ] L L

G([}c-1)(§-b)(;-3)+uxg {2;Ar-b)(:-B)-(;-l)[(g-b)i(;fﬁ)]}]
22(2-1) (3-%) (L-b)

\G [z(g'b)(ﬁfs)-(§~1)[(C?b)4(§;5)j
L L(Z~1) (%=1} (¥L-D)

+

. ?, - 2l -"' 2- 21 22[,,«_b]2‘.§-—] 12]

(-1)°(7=£)2(7-5)?

P aY
) x,iz(:-b)((-s)-(c-l)[(t—b)*(i-g)1ufd EE
|

-~
[Wa)
.

M
[er)
St

ceenr2ceny? y
(L~1)°(7=1)2(-F)" o |
. . s
IT ve satstitute in (6,10) the Torms for Gl ard
~a . . . .
Sy (e ¥}y we arrive at the Tollswing relatinns

n3(2) nId)

i

n .
- R (11

~

')

N
+H

e

W LOva
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The form of the differentiel operater L, and our
knowledge of the functional behavior of g® and g2 in %) <1
together with (6.13) shows that in [Tl < 1 h8(%) is a regular
function of ¢ and that h®(X) behaves like C1/2 multiplied by
a functicn vith & siople pole at { = C. For convenlence we
shall represent h® and h® in the foilowing manner

@ - 2 1k
htg) = b 5% akL——ﬂ—'-ll—»] (6. 1ka)

z == (Z - ) - b)
oo 2 Tk
i) = = b, r_ﬂ;_ll_:. ' (60 14D)
k=-2 L(: - b)(¢ - B) |

with ak and bk unk-own constants, These foras for hs and h®
possess the re-~uired dehavior in |{| < 1 and in addition sat-

isfy the functional relations (6.12) te-mwise.

C. ary < 4
The rezaining boundnary candltionc are derived in

detail in Arpendix C, part I, Ther are

(1) At T = C. ‘e iasure *the rr-viously Jdeter=ined
g

benavicr for gﬂ Sv demanding tha-

s /2,3 s
g” and Y g” are regalar functions of { as {—) 0,

- 1)0

(2) At the edges cf <he pluats ({

Thie fertyrred ‘ree surfacy. shal! continue t2 origle

ni*e al the olpus cf the

(b}

piate, l.c., z, = & thare

?
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(3) Upstream infinity (L = 1).

(a) The pecturbation velocity wy = 0
s
14m (¢ - 1) g2 = 0.
—31 4
(b) The perturbation pressure p, = O
i | s
1iz g% = O,

{1
(4) Downstream infinity ({ = b er B)e
The jJets leaving the edzes of the plate hehave
asymptotically like straight jets. No disturbances originat-

ing at downstresm infinity are propagated upstream in the jet

~\_s e.®) 3
1tm (Z - b) "g° and 1im_ (¥ - b) "g* exist,
{—5t r—b
D. 5 1o e P t

The detalls of writing the complete sywretric and
anti-symmetric solutions of the perturhation equation ere
carriad sut in Appendix C, part II, Je can now write the

for~s P the complete scl-itions.

(1) Antil-symmetric solat.ons

The rcoarlate anti-symietric ssiution awary =0 1s
a La {1} a .(2) :Ei a _a
6 =i K BRKT ¢ 3 By K (6:15)

a : . "
ani EL are uacnown coolficlents and a(l) and
the complewsntary zoiations develsped about L = O,

o8 ) . B
Tho terz B0 K o i a rarticular tnrecral o0 (Le13) with B (%)
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2
2 sl la, [ (L= T
h'ﬂﬂ' Cl 2 Rer L(( Y E)]

(2) Symmetric solutions

The complete symmetric solution is

s (1) (2) D s s
B = A K +BR KT 4 é;% E. Koup (6416)

where Ag, BY and E? are unknown coefficients and ER K3,. 1is
a pacticular integral of (6.13) with n3(Q) replaced by

h;u' = b +T r Q- le_—i'R*r .
(@ - D) - B
11{~atio f ! r gnditio
The appli~ation of the boundary conditions to the
solutions written above (see Appendlx C, part III for de-
tails) yields the foliowing results.

It zan readily be shown that there are no non-triv-
ial sn~lutions nade up cf only the *erms from the conmplementary
sclutions (l.e,, E?.or E; zero for all r) capable of satisfye-
ing all bouniary conliitions.

Sevaing admiazitle perturbations azong the solue-

I35 of the parlicular integral yields the

The dcundary conditions at = = 1 and [ = O demamd
that a total =f three lingar homogeneous eguations ba satls-

fied in the unknowns g, B and El,
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The boundary condition at { = b or { = P (both give
identical information) will be satisfied if R and \ satisfy
the ineguality

R+RL{X}_§1-rmu.

One of the linear homogeneous equations noted above involves
oniy the -inknowns E: and moreover the coefficient of Eg is

non--e¢ro. If r = 0 we would have Eg = O, Since we have

max

assumed Eg # 0 we can set 1 as a lover bound for r making

nax
the inequality
R+ut{ngc o

The boundary condition at { = 1 may be satisfied in
several different =man:ers depending up»n the relative magni-
tude »f R and R{ {x} Exanining ail possibilities we find
that consistent with the rejuirements of the other boundary

conditions all non-trivial solutions have

(&) Cymmerric s-lutions
In this case the hounda-y condit!-=ns at { = O and
L = -1 glve 2nly twn linecar himosencous euations tg be sgte
isfied oy A3, B3
The (neguality Taund »y applying the boundary con-

dittzn at ¥ = b s

&

e Ry .{X}Sl - r:.x‘

- ? - e - ’- N I - e ™ - - e . - v g
SJhe Torz U e llnear homorenclus cLunticns atove are now aot

e Chisice Ty = e

L)

¢

%

i
-

il

é

2

L[]

&

»

4

-~

o
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Again the boundary condition at { = 1 may be satis-
fied in several ways denending upon the relative magnitude
of  and RL-{R}. An investigation of one of these possibil-
ities shows that {f a third linear homogeneous equation 1is
satisfied by A3, Bf and Bf with ® hax
admiss=ible perturhations with Re {k} > 0. However, we would

= O, then there exist

then rejuire three linear homogeneous equations to be satis-
fied non-trivially by the three unknowns Aﬁ, Bﬁ and Eg. This
would require that the determinant of the coefficients be

equal to zerc. These coeffliclents appear to be unrelated and

P

i1t seams improhable tha* thelr doterrinant is zero. It does

not ssex feasible, however, to evaluate the coefflcients in

¢closed form in order to domenstrate tnis fact mathematically.
Assuming the deterainant to be non-:zero implies that Tmax
oust be greater than ».ro. This streagtheas the inequaltly
found at £ = b and we can then show that no admlssible per-

turhations have Rlu{l} v C,

Although “o have not (nund a sne-dimensional con-

tinuaxm of elecnvalucs A 74r prescnt analysis has becn able

%
-1
o)
Ly
-
>y

fet the pouiib'c vaiucs of A to be cumpletely in the

(a4
.

left half ~7 the c¢ozlex N plann, This

1.4

sho<e that any ade

mi3:ible norturbation has {iii £ C and wu ccaclude that

& Jet imoiagliag noraa ly upen a finite plate gives a neutrally

staklie or steble Tlow coanfizurat.cn.
The rezilits of this snslvsis are valld for any

ol

v & e dt,
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finite but nonezcro r:tic of plate width to jfet width (d4/D).
By making this ~atio as small as we please we can consider the
flow of a jJet >0 arbitrarily great width pazt a finito plate.
Sut this 13 a proper physical interprectation of the Helmholtz
platea problem sginee one nover has a truly infinite strcam in
reality. From this point of vicw the stability conclusions
rcached in this sectisn anpiy to the Helmholtz plate problem,
On the other hand, wo find a difTerent situation if
we make the ratio (4/D) vory large but still finite. In this
cage the point ¥ = = 1 continues to be an ordinary pnint of
the »erturration differoential equat'on and the houndary condi-
tisn zy = C must alwvays be cetisficd theres Howevor if one
actually sots d/D = o thc¢ dasic flow of this scetion rocs over
exactly into the basic flow of casc (n) of zcction V., Now
the point ¥ = = 1 {3 a rcgular siarular point corrosponding
to upstroam infinity and the bounlary condit:on 2y = 0 no
longer ap-lizcs,s A Tocxaatnation o th: work of the present
szction will show thnat it was the proconce of thisg a2ditional
boundary cormi.tion wiich jreclud .4 the “xistiice of any none
trivial unztable portursationgs Thus, ac far as stability is
¢inc.rned, the lizitineg cacz (d/D}—pax zorrcesranding 5 ths
inpinging of » Tinits 3.t on a plite of cxtromely large width
dovs not ap;ro-ch the 2ase »of o §0 ¢ fmpiariag on a truly infi-
nlte wall whisl in turn r pr sents 2 s-oei-) cn30 {case (a)

chetian V) ol o graal and apgornit oo,
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YII. Ceoncluding Romarks

This report hasg presented the results of an inves-
tigation into the stability of four types of two-dimensional
free surface flows of an ideal fluid when subjected to small
perturbations.

The porturbations of a hollow vortex flow bounded
by e¢ylindrical walls were shown to be neutrally steble and the
propara~isn of these disturbances was compared with the pro-
pagation ol gravity waves in waters The irpineing of a jet
on a Tinite platc was fcund to be a stable flow configuration.
In the case of a serieg of crifire Tlows all perturbations
were found tc be stable with the exception of an tsslated un-
sta“le perturhbaticn of the flow through a Horda mouthptece,
The existence of unstable pe-turbations vas indicated in the
case of {apinging equal and oprocite jets.

A“lo4 anl lieyes huve previously shovwn in [1] that
certain simrlifi~ations are possible when the basic flow hus
a sy—retric vel~city disg ribition. 7The only anti-sywr-tric

probiea treatsd in this report wags the tounded Roliow vortexe.

[5:4

Ian the course >0 tha investigatiosn the auth-rs attenpted to
treat the rertyrbations Lf 8 holinw vortex boandaed by parallel
pline walls az an 3128t 5nal exasp’: of an antie-syzretric
taszic flow, I this raso, however, ths besls “low pot-ential

waz To1vd as an groression lavi:lvias o21tiptic functlons vl

e

the ~omplexity nf *ne ropulting exrreczizng meda g sslution

incrzctatle,
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in the remaining problems the method of attack used
in this report 314 not result in the determination of a ong-
dimensional continuum of peraissible eigenvalues and corres-
pronding eigenfunctions, but rather, only gave upper bounds
on HL{\}. A8 & consoquence it has not been possible to form
any sort of st of elementary perturbations capahlc of gener-
ating 2 genoral perturbztion through a process similar to

Fourl~-r {nterration.
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Appendix A
Ceneralized Jrifice Flow

Part I, Derivation of the Bousdary Conditions

(1) The edge of the orifice ({ = - 1).

In the basic flow the free surface originates at the
point [ = « 1 which is the map of the edge of the orifice.
Since we are dealing with ideslized sharp edged orifices, it is
reasonable physically tm\demand that thé frea surface continue

to origincte here in any perturbed state. As discussed in

gaction II, thie candltion will be 3atisfiad if
=d {iy-r,-1rlt =0
z4 r Lix f, ij 0
In terms of ¥ we have
| 9 { 1 %4 rt
- z_:_f _J7Q d - N3 -
‘5 = /3 ‘Lix .119 XGZG JT
g
=1 A '
- n n <{uu,ta“'6(}2{:3'{7 =0 at { = - 1,

e ot L= - 1 Lgoa recalar golnt of the tasic flow and

~

nite value here,

o

to nove a

-

Fothe TouninTy oowdltion for 4l time t, we

Cl’ = :‘p‘.{ = 3 ’x’“__ (. I - 1‘
hrtityting for Towdd TL fres (Bolu) cives
4 1 -
! -
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Taking the anJugate of the second eguation, we have
-a+g[’(-1) +g;';’ (-1) = 0
-a g (-1) - gWX-1) = 0

giving as solutions

S =
g( ("1) a

C.

gg (-1)

(2) Upstream infiatty (f = C).
In order to presarve the nature of tne basic flow we .
demand that any perturbations in velocity or pregsure vanish

at upstream infinity.

(a) lim w, = O
{—0 °

from (2.6)
92 = Wi, .

In turms of € NG
1 - = -YB—:-J
52 2( n (z‘l) tzco

The boundary contition {npliles

~e)

11n L8 fﬁlze\t + Gzccrt] = C,
NG

a3 in doundary condit -n (1) sudbstitation for Gy and G, froo

it

(~e 177} 3m0¥s th-t

oD -
r o ° s on
| 5 -4 £, = lim { n gt ® O,
- 7
- . _ = i . Y . wife a . .
£t Koow hat in JU0 <1 27 and O £ e nnctiytic
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functions of {, hence we may write
®

e® = s artr

-0
a % b 1'41/2

[ 4 S L c .

Abplying to gs the boundary condition,

o+l s
1im (N g(=o,
£ —0

we see immediately that

ar=0 for r -1

for 211 n, 3y means of a similar treatment for the expression

for ga wa can find that

(1]
por)

br=0 r¢<-2 forn

"
N
+
L J
2
D

b.=06 r<-1 forn
The above then Luiply the Toiiowing

5
¢ (L) is a rezuluir fuacticn of L at L = O

L ga(",? ty v gilar 2t [ = 7

'
"‘
s~
[ |
-
.
k|
]
=~
—
L2

-t
"
)
-~
~
"
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(b} lim P,
g-30

7rom boundary condition (1(b)) of section II this requires

im Rl.{}} =0
0 2

1ia R xcle)‘t + TGzeXt} = 0,
{—0

=0

ar

ence

01(0) = 02(0) = 0,

Prom (L,10) wue find th-ot *this re. ulres that

a

gs(O) =g (0) =a =20

and as 1n btoundary condition 2(a) we can finally establish that

gl

g C‘l/z 80

and
are rrgular functions of { at L = O for all n.

(1) Downstream infinity (L = 1).

In the baczic flow, 13 the jlet proceeds downstream
from the orifice, it asymptotically appronches a uniform
gtratcht jects The hehavior of a uniform strai-ht jot when sub-
Jocted to smill disturdinces is reidlily investipntoed by using
the o thods of [, ceh-poer I¢],

It ig f2ound *thet cuch o Tlow sonilgawrntion is noutral-

o)
—-
[
&
o
e |

ace af rthe $st 45 propneated
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express this by demanding that the changs of the velocity per-
turbation ag seen by an chserver moving with the jet be zero.
Mothema“ically this can be cxpressed by demanding that the

material derivative of wp vanish, l.e.,

8
-:3 + Yo 2!3 =0 asf{—-31

at 38
W' ore
$ = distance along the jet
and
U = volocity of basic flow at ——31.

‘e rccall that the asymptotic velocity of the jet U =1 and
we note that

s 4+ consts

fo = 5 + constf

and

U* t + comnst. t + const.

"

g
hold asyaptotically. Cozblring thosce we havy

f = s 4 const,

O
[}

re
+

2]

Ly

o

(L]

N

Y

wltiy thic in 2ind ur downstrean 1nfinity bolslary conditlion

bocames almrly

Y

]
P
¢
i%,
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wa fimd
n*l \/2 _
v, = -zt 7 5& (¢ (-1 crﬁz(-«‘:-li"t&'-‘zl-

a2

1 e
rcduces  to

where ¢, and ¢_ arn nane==2oro constants., Our boundary condition

A - 601 = dp @ - N

] = 0,
dfp i 4 dfo .4

In: torms of { this becomes |
— dro 1-h, 4 | 1%
€ - 1 FlE - 170 1= (€= 1) I - 1oy ) =0
as  [—31,

The point § = 1 {s zoen from an oxamination of tha
cquations governing Gl and G? (+.11) to be a rezular singular
roint of thu 24’ ¢rential vquations rom this we can infer

that G, and G, will behava zither Lik~ som- pOHuPVOf (L - 1),

1
0. like log (§ = 1) muttipli:d by somc power of (L - 1). With
this ‘nformation it can bY¢ shown that woe can saitisfy the bounde-

ary ~oardition above by doamanding that

({ - 1)~kﬁl and (€ - 1)-X52 cxlst at L = 1,

Sabatituting f-r Gl and G, fraoo (4. 1C) our *ounda~y condition

finally b come:

¥ -“ 2 N hl f‘.\‘
o~ 17 e (e 17T exist atro= 1,
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Part II. Derivation of tho golutions of the perturbatlon
guuation
The perturbation cquation (4.13)

S 3
L, (g% =1n%0

in expandcd f;rm is

3 8 /o=l \(@+ 1)
a H Y
cL CA % Wy - 1) /

L]
a/s A RSG R Vi N T

8 .
A R . (Al
Lt - 0% W@ -0 i - b

The d41°forential squation (A.1l) is & lincar s.cond
order <quation with rupular singular points at 4 =0, 1, oo,
and nhonce falls into the class of o Fuchsian diffurontial
uquiation nf tne sceond ord-.r,. .

Fotlowing the method of [7, pr. 155 ot suge. ], Wo can
put <quatisn (A1) into standard form and dotoraine tho roots
of the tndicial ajguatisn at the “inite sinsuliar pointzse It is
not nuc:s-ary to write thls form cxeliecltly, sineue o knoswlodge
nf the locatian of the cingular polnts and the roots of tho
indietal <cuari-n, Ar the o xranonts of the singulsritics ag
they aro gencPally teast d, comelotely dctoriiines tho farm of
th: rz:lstians o *n wstinn,

we oo oroniity Tind the cxpononts of the gingulart-
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and | | Ay 1+
7 at { = 10

If we make the fbllowing change of dependent variable
,l i ) ) . k V .
g =t -1 (A 2)

where g and H stand ~or either g’ and HY or g% and Ha, the
suporscripts having besn dropped for convenience, we again'
obtain a dif“erential cjuation with‘regular:singularities at

{ =0, 1, oo and with exponents

o,-ﬂ-;x—iﬁ at £ = 0

0, 1 at ¢ = 1.

The difTurential etjuatlon for H ls the staniard form of the

Hypoerguonmetric eguatlon.

TP U A o)y Jthe fowpenaoug Bguation

We ure now in a pnsitisn to write the szolutlons of
the hozdgenesus eguntion, fieey (A1) with the right hand side
set e p1al to wero,  In o pueneral the two linearly indepondent
aclutliong about 4 regular sineular +oint 4 = o with exnonents

By are =7 tar fomn

; B ,
TARLEPNC GRS IS )

(1) ,
whore YO8 ln revilnr cLd o eI Bt Y 7oA. Using the trang-

faorza® ~n {Acsl o ous 2 en Tlad e Yinouriy irdependont sole
FI1
7

F g
$ .. P } . - EURE ) . esi 1
gtiang Torop obial w: st denagte by EVEY

40 nyvs writs the forms of the solations far g sbout
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the points { = 0, 1 and -1,

= O
§=0 (1) w ¥ o 1D

(Ae3)

K{Z) - CP(C - 1) F(Z)

(1)

where F and F(2) are regular and non-gero at { = 0. The

above iz valld provided JLl—gagﬂg is not an integer. If such

1s the cansge the =xponents of the singularities differ by an

(2)

{ntegaer and further considerations show that K must he ro-

placcﬁ by

(1)

Alw -
K(“) = C?Cv Isg 0% -~ 1) F 7+ 2P -

DM G

“rym
whore c., = ennstaint and F(") {8 rypuler and nonecero at § = O,

¢

¢ =]
¢(3)

t
)
-
-~
oy
]
et
Su?
v
'ﬁ
~~
Lt
p

(A 9)

1
K(*) )kF{h)

T

G
-
*=

~
4

RANIAI SEME ET LA pel3) Lerer 2 g
=03) ()|

“ith ¢ = conctint, and ¥ ant ¥ rogaltr wnd nonezern at
821, In any ropisn where both the solatisng abosut L = 0
and the sslutiang byt = 1 are valld, Wwe kaow thet o linear

. R 1, S . _ . - oo, e , S
WWEAteed s folntion noonecting Loy threeo A7 them must ceist,

AT

{73 £} ‘ (3
R T I SR AL LI P W

al

winre YR ats ynd Ble sre consbtants



8,b, - a,b, = & #0

a;-; Ce

1]

.« _*

An examination of our differential equation (A.1)
shows that the point { = = 1 is an ordinary point of the dif-
ferentinl ecuatioﬁ, and at such a point we may psescriBe both
the value of the solution and its first derivative, Further,

wa can easily show that it is possible to choose two linearly

indepenlent snlutions, K(S) and K(é), in such a manner that
k-1 = k® ) =1

< (A7)
Ki?)(-l) = K(é)(-l) = O

As before, we may ~l1so write

k1) e (%) Ly k(&) |
3 3 ' (A.8)

(2 ﬁkxcgj . bux(é} or k(3° - aﬂK(S) . b;K(é)
with
{]Bbz bBQ“* = 52 # '3
335‘:_ {33,‘; - .5; F‘ o,

iarticul.r Integrala
Having Tount the enzplementasy aslutions, the approe
priste forme of the particilrr integral (n the neighborhond of

the (~ints at which we wiszsh to apply boundary erndlitions, are

rapiily foumd,  Thus, Knowing two liaerrly independent solue
_.-g‘u &S

tioneg K'*7 and XY<7 ywe ean write the portisular integrel
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{see [8,p=-123]) as

g -
, (1) | (7, +1) n (%) (3
Pele = K K a

, ‘I 22(r - 1) w (kC(FIx(3)y
o | (A.9)
L

_ kD ;‘ _ (¢ + 1) nigo k{8 gy
Y2 - w3

whore {, is an arbitrary ordinary point which we shall take as
{==1

w(K(i)K(j)) Is the Wronskian of the two solutlons
and can be fHund irmediately from the differential equation

(A1) as (see [E, p=1191]),

(1) () ~ 3
A = A - * .
(7K exp { J [coefricient of gtmﬂ.

where A = constant, Substituting from (A.1l)

1 flgel K
.ﬁ.(xsn)h(e)) = A exXp = N ¢ W «-A——-——) d
U L rer - 1)

(4.10)
o oag =)=l gy
n
‘nca the silurions about ¥z 1 and U - « 1 are ree

lated 22 the zolutions azout 0 = 6 by Yinear relations ¥we can

. -y - e foupr 1}" :“‘
fint N\T(ii?{;)) : n(ng i 7y
u’ o 61
(A 11)
w{X 2T o= .
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Somplete Solutlons of the Perturbation Fauation
(1) Anti-symmetric solutions

The complete anti-symmeti i~ solution 1is

®
gg = AQ Bﬁ x® . 5;% E: K§+r (4.15)

K§+r 13 a tern of the particular integral found if h(Z) is
repluced by

a - R+
hR+r : ;_T7% 8R+r [;“‘5;“‘%] ’

K(1) .

4 (T -1)

in the cxprassion (A.9) for the particular integral,

Making the appropriate substitutions we have

aboyt § = 0

63 = A% v - MY B2 (cteg - 1*e(?)y

4
Q0 a(('l)k 4 i R+r)- -
& P (zany T

+ 02—

r=0 A 1_ J >
-1

«2(R+p) =
0 r) RF(z)dc

tRir)ey/2q

N
(g-1) ¢

J

~2(R+r) =)

(‘
¥
- pepl®) ﬂ; (r+1) FlDar
v

JZI:E:ZES = M

n

e
Yoz Ll*§5“§i~

(1)

3 . [y N it
the tw~ rozplarentary sofulizas are ¥ and K(" and we have
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(1))+Bg(c2l" log ¥ (ﬁ-l)KFu)

g

-3/2
+ch (g 1)’1‘(2) )+§ J:(( 1) %v (I)J' fca(tﬂ)cm”) 3/2= .
=1

o= AR -r

x 1og(((-1)XP(1)+(C+1)((R+r)'3/2"((-1)'2(n+r)’kp(2)‘

4 |
-[cztvlog( F(l)dﬁF(‘?)']J (UI)C\RQ)-3/2-p(c-l)-2(R+r)-hF(1)d€}

21

lat

(A.13)
about L =1

« (At +s°a2)[c“(c-1)l**v‘3’l+cA§b +880,) (e (g1 1

X

o ..: 5 C

x 108K=DF‘3’+Z“(C~1) RS > =~ 2((-1)"{;"“-1)? j
70 A

x [cq (€ +1) (RITI=3/2v (g g y2(Rerdele Ry e 1yp(3)

. ((*1)(‘?*”‘3/2"(c-1)‘2‘“‘f"‘P‘“’16( -[e, 04 (€-1)10g€-1)F" Y

. L “‘l')lj (ge1)g(ROFI=3/2mv (g ym2(Hm) s 1h () )

-1 (A 1)
—= 4
(5) 132 Fab A 1
A =( al a . . a r
R Rk LR A [ B
U
N £
fep)ei/2e LAzt “2(fHap)-u) '
x (LenygteTIY N (gaq) RN L6) () i x
),
Her o ?-M > Y Y .
!{34{3{(!“?) Ve i ({,1"."2(‘1‘"}'2’}:(53&&
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(2) Symnetric solutions
The complete symmetric solution is

s s (1)

_ s (2) s D .8 .8
8y = Ap K + Bp K + K+ 5%% Er KR+r . (4.16)
B K: is a term of the particular integral found if
h{%) 1s replaced by

5 -
%:-26%——:—%

in the eoxpression (A.9) and E’ K§+r Js a term of the particular
interrsl found if h{Z)} is replaced by

h's = b, r_.....____.z 5 Rer
Rer  FoT L(C - 1)

1a the ecxyrrecuion (A9,

Maing the aprropriate substitutisns, we have

gbout L = O z
aZ = nq YL~ l)kF(I))+g e ¥y (C-l) {’ (1) Y .
21
TV TR D ag ) } e Ve L
-1
4
. ;Z; —Iiilllmfr ?(‘}g (o) (Rerdelov =2 (ReT)=1=h (2)
1

() EPE I P - fuap)alad g
- U e I gLy T T FVgr T (al6)

L e
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2
The above holds except when A = N + Q_S-n&'ﬂ_ N=0, 1, 2

ese o In the latter case the appr .riate solution is

= A2 Q-DMF ) upde £ 108 2D F P P @)
¢ |
¢ e 1)"4 ¢ vplt) {{c,t: log £¢€-1) M FD) 4w g1 ey

~1
g

]dr-[c C log? F(l)-q- {pp(a)‘ ) "1'#((_ )-2(R+r)—1—

|...u

e \ &
(1Y m B2({-1)" | 0 R4r)=l-
, R -4fc‘F( 3 [cgcc+1)c(‘+r) -

x 10g C(C-1) . ) . (C+1>C(R*r) 1 Y(c-1) 2(R+r)=lw)
g
2 v - (R4r)ele
X I-( g ]d{»[c:}( logl P‘(l)*ﬁp ] (L+1)e By
o
-l
~2(Rer)el=h (1) }
x (C-1) Far . (A 17)
ot § o= 1
o ,
g€ _ ,.8 N P O 1 A7) .5 8 n BEN
t» ~ (A +3 . - 17t [ o, -
g, 7 (e E*lnl-f}[{' ({=1) F }+{ﬁz(b1+bﬁb.?){c%£ (L=-1) %
L
- k! . o), L S {1y
¥ lop ga-l}?(—) AN p{ ); + Er%t“(i-lix L(=1)r | ox
v -'_1
* 1*5’:'-;—?{"-'1}!’*1; ; { ”1)" ‘} y‘:-t v,': *}-)‘:("}}
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4
-1~ - ® E3
~ Loy (Z-1)10g(2-1)F 3 ip (4 f 1=v(panl ’\p(3>ﬁt}+ =, Et_i;l .
-1 o

(Rep)=l=y ~2(R+r)= )\ x

X :“((-1)"{«-1)?‘3 J [y, (Z+1)¢ 1)

(3) (Rér)eley 2(R+r)-1 “Ap ()

x log(L-L)F ~ " +(r+1) (g-1)"

]dﬁ "‘;"’u(( 1) b 4

4
{ - e - 2
x log(¢-1)F 3 p ™)) 5((,—1,“(3 EY=ley(p_qym2(ReT) )';?(3)dl:j»

(A. 18)

ghout ¥ = = ¢
sy 3¢9 (8 bee. Ty e Lload)
(g 0oy 6Ptz a6 e P | poi- ML
%
-2\ ( il_ﬂ_l- A - n @ EXD
¢ @0 PGB [0 T e ™ Pa e F B
J J r=0 A
1
[ (5) ; (1=a))
' Rer)-1- Ld= ~2(R+r)-1a2
x| L geng P! no(roqy 2Tl (6) (6
N
- FOCILY]
i {Rer)=la= ol mwZ{(He+r)wlew? ¢ g
v | eI B Rl L g

"
-1
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Fart IIL. jApplication of Soundary Conditions

We shall now apply the boundary conditions as derived
in part 1 of this appendix to the complete solutions of the

perturbation equation found in the preceding section

(1) Anti-symmetric solutions
1) About § = - 13 gg (-1)
An Iinspection of the solution, equation {(A.1%),

shows that

-‘ — -
i’: (K_‘ . ) is zaro at C le
AOW

*z(aﬂ "O*(A133+Baa,)f(5)( 1)+( A, b3+B b )Kéé)( 1).

{5 (8)
Tubstituting from (A, 7) K;j)(-l) = 0O and K( (=1) = 1, we
obtaln

ALbo o+ Bob o= O, (As 20)

11) About g = O3 r* g or ¢ lf‘ga 1s a regular func-

tion of X

Caze (a) h # N« &

,—1/:" ¢ |

If wo damand that 4 g he rapalar we shall find
th it j‘ !‘ lS"{\‘! {“ VQ’ f“ }{‘ t:r.-‘!r! iﬂ"!nx ;{’ 3?‘3 :' = G‘ 1, ;»:}' ‘;)’ s &0 0

e b rapularg Bomay Loke on

LI R ey aYulsse oo~ 1 ™ LA P " 6 e,
only the wvaldes ko= 1, D0 %, .., , This can be seen Ly 4l
grastne’ian of the tws (ntaprals o the 5-1utizn gg, equartion

4 .
(e 1o be 20 the fiprst o rat, Tor examrie, the partisn of the
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integrand (ow

i\s + 1ML - 1)-2(3*-!')-)\ P(z)}

may be developed in a power series since it is a regular funce
tion of { in the neighborhood of { = O, Our integrand then
100K8 like
(R4r)=3/2=y 2
4 [, + 810 + a0 + ous )

)"3/2- v

which for (Rsr # - 1 may be integrated termwise, giving

the behavior of the integral at the upper limit as

(Rer)~1/2=-v
C [bo+blc+b2€2+°" ]0

Multiplying by (v wo arrive at a function which behaves 1like

Rer )=
C( +ri-1/2 at € =0
1/283

/2
1 ga

Jow apnlyine the boundary condition { regular, woe pet a

hohavinr 1ike C(R*r); and applying ¢~

regular, a behavior
» IT'R i3 not restrict~rd ag stated atove we
would have tn maXoe all Eg zoro for r guch that (B+r) or
(R+r) - 1, rezpuctively ig lesa than zeros  Sinco Eg hias boeen
asiumed non-zoro wo must have (R4r) or (Re+r) - 1, as tho casge
may Lo, greater than or ojual o zoro glving permissible valuus
of # as oripginally stated,

dieh thoese valuss of ® the snly torms in the s50lu-

a . . )
ti=n £ which do not :a 1sfy the beuniury zonditions can beo

written in thoe Tore
G % a A02),. 4 .{1) e
[11_.._ + A {iﬁ; :u C )( -‘}? :1 (:A‘ ‘-fl;if
Fal A r‘:‘:{ r T
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when !
A E - (2N + 1) + V’§(25+1)

a 1 & a
RTR S

¢t oy x¢? (Ae21b)

(B ¢

when 5
NFA - {2 +1) = \é; (2N + 1)
N =0, }., 2, 3y vie o
1 3 a2 (1)
(& 2L E2D°(0)] K log ¢ (Ae 212)
Arsp ¥ T
whan
f.
- - 2 ‘-5-%
)\ (up + l) + vn (2? + 1)
[‘}\ ﬁ e> i1 (0)) k2 log § (A.214)
r=0 * T
when E;" .
T - P - il
A\ (2F + 1) \/-;; (2P + 1)
PfR,R*l,R*-E’,... .
Je note that it can be shown that
gz N+ f when k= « (2N +1) = '¢% (2N + 1)
and

-}

: . . s £y :) 4 oes o -
v N+ g when Az o« {2+« 1) » yE (83 + 1},

The fallwwing notation hag bheen ndo; ted

Py .

Cf"{ﬁ} is "Hadnmords® intte gert f the integrnl in
F i '{1.7 ¢ 4 + + - = i

R oep with P arrearing 1o the intezrand., This metissd of

.

eYillat oon o cives chp value Tor own inteprral whoose integrand hasg

&% oy 0 thie (tzift3 a7 Integration, ciagular behavior lixe
vy A s o) o il { 'R
A “lTnon v ¥ l' lf, LI [} ’.am 5; < l ‘-.St*"? ‘g?})‘
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Dii)(ﬁ) is the coefficient of C'l in the series

expansion of the integrand of the integral in K§+r involving
(1)
|

The torms shown in (A.12n - d) are those terms in
a
43
the boundary condition. Thus, in order to satisfy our boundary

which do not possess the half-order behavior required by

condition, we must set cqual to zoro whichevor twe bracketed
quantitiss in (A.2la - d) are relevant in view of the value of
\e We Cinally arrive at no more than two lincar homogeneous

equations to bu satisficd by the unknowns AR, Bp and EZ.
2

Case (b) AN = N + = all
n

In this casc the solution gg valid about { = O is
equntion (A.13), Th+ -rpum~nts uged in the preceding discus-
sion concorning the cholco of the index R are still aprlicuble.
Howover, nn. can show that X\ cnn no langer tako on the spocial
valu-s making por v = N + &, In this case {t can b: shown
that 1n ardar to s~tisfy the boundary esnditinn we must sot

(13} (2)

c-21l to zero the aoofiiel nt of K and K auparately,

This apain givos risge to twy linenar Lemse.noosus ~guations in

5 S =3

141} Abnut U= 13 (F - 1)'*&& oxisty,

a]

the suintion g, (Aell) walld st

-
E
]

g

-4
“
5
-
-

e

-

Ur 1 slowe that the terme af the compleaentsry 59lutlsn 5a%e
tafy he boamvisry oondivizn € iy ovalie of ke It roeanding

to axnming tho

vy * . 5 L ey Foes . PR + 4 . T e s
Sent U the Yepms o in e Intogrond, which oarc rogalar in

g
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(¥ - 1), in a power series and then integrate termwise, the
most singular bshavior after multiplying by ({ - 1)'* will be

like - Y40
(- 1) 2{R+r{+2 A .

Hence our boundary condition will be satisfied if

"-2(a+r) +2-RL{R}20
o? R {k £2~2(R + r).
7(2)' Symmetric solutions,
The application of the houndary conditions to the
synmetric solutions proceeds in a manner very similar to the

anti{-gymmetric case,

1) Aout f = - 1; go(-1) =

B¢

An insprctinn ¢f the solution (A.19) shows that

, s _ - _
&(haﬂ)-aﬁz(xq)~o at ¥ = - 1

and our boundary contltieon yields
(A;h + Bb) 5 oa. (A 72)

1 £3
14} About U = €35 g” or £ g% ropular 2t £ o= O,

=

Caszss () L £ 4 «+ .LL.:.JLQ_

ity ———

;.3

3

* 3 - , . . -i
A7 In “he antiesym-atrlc case roguiring that L &

£
d

Be rezulsr zives & 2 1, 2, 3, «se 4 a8 allowablo valua: of the

irelex,  In aliition we wust have g =z O making Kg z 0o The
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terms in g; which will not be regular after applying the bvound-
ary condition can be written in the form

(A3 +% b3 E Cf.e)(on k¢ (A 23a)
r=0
whan -
NE =20+ 2\/1‘!
2 2
8y - & P ef ¢{M (o) k% (As 23b)
I =
when T
R # - 2&‘ - ZV-E
N = 1, 2’ 3’ vss o
@
[-% }"é Fo DI(,E)(G)] k1) og ¢ (A 23¢)
re
when R {E
K B II + 2\1.'1
o5}
[-}\ I Dz(-““’” ) Log % (Ae23d)
A ps I
when -

p=n|ﬂ+l’tont

4@ nata that Lt can ba shown that

=l

. s e iW
po= oA when Aoz - ZH - ¢

- Fa h P
Qe aq 1oa ¢ orhe H Y coniitian ¥ AN -2V BELE o
L] Yoy LI - 4
glver ag allowarl slien b Tg0 1 s Ly sen JttE sy aeg
_ 3
vaLurg o 0 ke Toepes Qo ThOW ot S orogpalar nan b
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writrten {n the lornm

2 Z, 2 (1}
u; +—,§-n<:§ )(o) +:l éa:-:g cf, )(0)} K

when
A ¥ - 2H = 2\J§
s _a 1) - L g (1) (2)
(B - & Cq (0) - 4 > Ep Cp (O] K
whoen

1, 2, 3, seo

[J% (1) 1y ¢

, o8 .(2)
; A2 E. DL (0] K

a . 1w 5 (1) £2) .
[Xﬁ c (0 0+ n e E. D, (07 K log
A=~ op - 2k
in

}'.‘ = r‘ R + 1' L

{7) have the same

“U ey

rass and the wtatton C
L

(r) anl U

(LY (1)
r r

arn: i‘éi)

. 3
Aeaniar with paoronce to the torn Kﬁo

analorsnus

in »rter to g ticzfy the Saounlary condition wa must
et eouny W oeerg Whlchaver Two bracketed gaantitiag In (A7 lae
A1 e (A ba - 4 are rorisvant in view of the valuae of X,
gov Twn Uit hempaone sus o cquat g e o ba ogat oTied
mrowns AL, BY and B

92

(As 2b4a)

(A. 24D)

(A 24%c)

( Ao :ﬂ*d )

I

moaning ag in thn antl-

() hns an

vy tha
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2

Case (b) A= ¥+« i o)

oy

in this case thae solution for g§ valid at 4 = 0 1is
(A.17). ¥ith X as given atove neither p ncr v can take on
fategral values. In this case it can be shown that in order
to satisfy the »oundary condition we must set equal to zero
the coefficients of k(1) and K(Z) saparately. This gives rise
to two linear homogeneous eyuations in the unknowns AS, :g, (s
and E;.

Aprlying the boundary condition in the manaer used
in the antl-sy matric case we find the {ollowing restriction

on A -
M INL <1 - 2(Rer)s

Avpendix B, Eunual and Opposite Jots

Part I, Derivatton of bounqdary esniitiong

(1, Abaut the point y = O,
e have glprendy sceclfisd tha hehavior of the symmet-
ric and anti-gya-etric parturbations in [7] < 1 for cuse (u)

and (L)e We shall dncare this behovior by demanding that

- g =172 . .
nsa {a) g7 and T M) he resular Cunctiong of 4

-

e (b} gty arviopMY) bLe roeiiar fanctiong of U

43 [ i ]
{20 ooteeans 10000y T2 L.
130 %he purtursetion vel oIty Weomantovanlsh o snore,
jrl I’
Tim w_ = T,




Rut , ar,

T &, = 2 g
Wy T WEp =W 35; y

nor 1/2
whance Lim 4 g - 1)(( + 1) [c ekt + G Yt1 = 0,

{1 2 h4 x
This {mplies
1tm (¥ -~ 1)G =0
=51 ¢ 4
1im (¥ - 1)G = 0,
{—>1 2L
Suhatituting for G, and G from {7.8) or (5.9) respoctively,
wee find casa (a) andd ease (b) tim (¢ - l)gg = 0,
¢ ~1

i1} the perturbation prascsure P, vanlshes at upstream

{nfTintty, t.0.,
l.lm pf) = Ol

-1
This i~-vilesn : (. o
ilm R f =0
X1 ‘L?3 ’

aneoe

1tm RE Irg et o \'u‘ux"} = O,
r—=1 L 1 “

s
i

ey 4 e o ¥ .3 4 e
fhis wit? ho msatisgfiod if

m G, = D
L }? e
- 7 %
and
im Gz 1,
-
T }‘{ ‘
satstituting Jrev (foe) mr (000 rogst oetively, Wwe find
B ) T 4 TR
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(3) Downstream i{nfinity ¢ = - 1.

In the limit as we anproach downstream infinity, the
jet is to act like a straight jet. To an obgarver moving down-
stream with the agymptotic jet velocity, the perturbation
velocity will appear to assume a constant value, Using the
sama arguments as in Appendix A to Section IV this boundary

eondition implies

la) 1=
(r,+1)a¢?.{u;>1> GIC]=(c+1)§;:I(c+1) xsgtlzo-
Using oquations (9.8) or (9.,9) respectively and obhierving that
the point 4 = - is a regular csingulaf point of the porturba-

tion squatinn, we can satisfy the above boundary conditlion 1€

cage (a) and case (b)
(g + - g®

exicty,

vart Ile  Qerivation of solnations of perturnation equatiopn

The perturbha o cquetinn (5, 10), after substitution

gf (571} or the fors of the di7feroatinl oporator Ly» bocnmes

! C
‘ ] “ =y v )
b',cc + ﬁ’;{ —e * ;’......." }1' - pTE 4 = o - / .*")"'ZA
oy rov T Ly A (RIPIEE0 B
s Vi \
(Bal)
3{¢“* .
- Pt~ W S . \ o ;&,..--—‘- i";
23 TSNS
> - -
vhe oo ponn hororr L frorog ‘rivoor Tiesymos Lric
i qv‘fri‘ . * o o o] - -i?’ ] X -




35807/2 96

Equation {(B,1) 1s a non-homogeneous linear ordlnary
differential equation with regular singular points at 8, = o,

a, = 1, 53 * « 1 gnd has o0 as a regular singular point. The

esponants of the singularities a, ﬁi are shown below
8y = 0, 51 = %, at 7 =20
a, = « Xy 32 =1l-X\, 8t ¢ =1
ay = Ay 93 =14+Xx, at { =-1
N, T 0y B = - % y at { = o.

If we make a transformition of the dependent variahle

.’:i a

. a
g = (L -a) (C-ay 2(C-a) di=(-DMCs 1M u(B2)

3

we arrive at the Tollouing homoroneous 4if erential squation

for Y

. ' A
H(r + Hy (’}() + H (C((- DY (A 1)) = 0 (B )

with the samoe raoalar singular pointse The new exponents of

the siqguiarities are chown halow

G, -,l, 1t L =0
g, 1 at 1 =1
r\, I d % {0 W o- 7.

3

[+
[
(o]
a‘ﬁ
"y
[2¢)
pa
(a4
P
g
.""‘
i
F
“

#

.
o
an—y
L L]
{F
&

Fountt oo (BaZ; t2 ¥nawn ns Usun's

{10 and {11 1.
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Solutions of the ‘iomoreneous Equation

With the xnowledge of the location of the rsgular
singular points and the expconents of the singularities we may
write the forms of the solutions of equation (B.3). The éppli«
cation of the transformation (B.2) to these soclutions will

yield the complementary solutions of equation (B.l) for g vhich

we wlll designate as K(i).
About § = 0
gV -2 o s ot fY
K% s - Mg e M D)
oh (1) (2) -
ere F and F are regular and non=zero at ¥ = 0.
About & = 1 \
AR TP L TN PL R D
N . .
K < ot - M Mg - DK 1

et - DM - MW

-

A2

wherg F -7 and F(k

)

ars repular and one-zaro at =1 and
¢, - constant. In addition we know that in any recion of
comzon valldity of the sajuniong «bout { = 0 and ¢ = 1 there

éxist linear relatisne »f tha foprm

A1) {1) ey
K = le - bIK

RER S I L
X
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About L = -

(5 N (5

"

({ - 1)'*(( + 1)

(6)

K e (l = 1)-k(( + 1)1+klog(t + 1) F(S)

+ (r - 1M+ 1M 8

;: t
where F(’) and F‘é) are regular and non--ero at { = - 1, and

cé = constant. Arain we may write

(1) (%) (6)
K + a3K + b3K with a3bk - hB.ﬁ,+ =9, £0
(2) (5) L{6)
K z a,_‘}( + b}vf{
arti r Intepra

ifroceading as in Appendix A to soction IV we can

write the parttaular intepral as

v
p : (3
P.l, = K(i) ‘ i) KJ a. -
¢t - v s b ow ) k)
o {b.l)
4 1)
o negy &' ag
- N i _"'w_—"'—*"'*—'--'—-i-f—--'-"—-—-
¢; KL= DK+ 1) et )y
(0 (1) e - i
Whnera § ant b are wuo lincarly indeperndent complementary

(1) (D

312t ng and (R ' } {3 the Wronskiasn of the.e two 85lue
tinz. #we =ay svaluate %o Jronsxlang fram the 4iffenentinl

Cixo # - - :
#untlonsg, LY oare
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with A = ¢nnstant,

gonplets Solutions of the Ferturhatisn iguation

(1) Anti-zymmetric solutions,

The complete anti-symmetric sslucion is

a 3K(l)

(2)
&g = Ag 2K

R

-

® 4
* g%g ErnKger (B.5)

hare
fopd o
T BT

is the particular inteeral when h({) in exrrrssion (B.k) is
replaced by
cuce (a)

Rar T Y75 Yar

b
t
Y
t
re
/“_‘\
et sl
+|t
b
—~

or

uq.‘_r i1

:::-'

i
Fat Ry
i
! -
—— "

-

-

AT

Yaszing the aprrepriate gaabstitatisng we have

about L2 0
cane (i)

ﬂ ‘f‘ 111‘2 ﬂ‘t }_ 1‘
RN SRS G AR I SES

v > - ay KB )
- a -t . {: -
crlrer - uTe e T EY L 3
r r=C A
Yoo l/0 1) 1 BEE TS
‘ . IR - . A
¥ Lel -0 F T Ty x
4
o g v
~ A
‘-:fnéf)-lnkhg 1 (o} 170
X (f+1l; Foooar ar 4 x
v
s R
?f_r‘!,ﬁr)ﬁi - (T Yulay !1} 3
® (=1} A< VTN Pleish gt el
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case (b)
AP LA B PSS - (S MY

g

EZ { 2 2(R4r)+
+ 2 En g [z -1/ I

23 R R

. ((41)”2(“")'2'*F(2)dz-?(2)’

X?(Q)}

(t_l)zmﬂ-)&((q)-2(n+r)-2-x?(1&§

© (B.7)
ont =

case {a)

" (Al 1=h

B2 = (A, +pa) ((C-1) TG PO 1By Bib ) (e, (2-1)

\ b ES
x 1oe(r-1) (s DOl M ¥« 3 L

=X
(g-1)
r=0 A <

[Ck{‘l(ﬁ,l)ﬁ(ﬁ¢r)+1+ Klﬂg(t-l) .

% (c‘1)-2{R+r)-1wXF(3§+c-1( )2(}'«41')4»%.(01)-2(R+r)-1-)._F(l+)]dc

2{H4r)+14)

o[, (-1 1eg(-0F T ) gy x

Fa LN ﬁr&dﬂ

~2(kdp)=1=) (3],

x {7+1) F 1

~~
ey
s
"
~.
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case (b)

. 1-
= (A% +Ba){ (-1 a1 1 a30, 488D, (g1 T

+BRb,

o g2 -\
% 1or(C-1)(t1) P P e (e1) Mo ) B ) .22 E" Il x
r=0

'{(c ! /2 1) 2(ReT)+100

Q

W\""‘

x (C*l)x {FC-l)F log(f-1) x

'

~ﬁ(a+r)-2-xF(3)+c-1/2 2(R+T )} +\

g
.

~fe, (=D 1og(g-1r 3 sty ¢ M2
Lo

Ve De Iy
w2{R4+r)=2 kF( )]

% (L+1) (L=1) (L+1) ag

2{R+L}+1+M .

< (Rer)=2a) ( 3
X (C+1)‘jh+r) F‘a)dC* (B,9)

Aot Los o« ]

-l

case (o)

e - <nfag¢‘2r (-1 eI METS2EN (AZD +ﬁ“b RICA(S 1™«

! I

)

AN
.1"‘ 1/"\ - .r ”I’ (] -R
x (g i N e FC T aeran TNy ;5‘ (z-1) " x
¢ T
‘ LAY . =T, Plieryak, e i(iler)e)
x (go1) - (genEt T fe T (et (4+1) x
v r
I x C{Rer #y - {Rep i ale) (©)
. T ,_.:\'-‘ N w : . sl v
L ,{",)t *+ . (_' Ld _f‘t‘a) £ }’—1,
r
- ] g et ME -5 I rUei_ ,‘( ¢5~}43!
r
- e e i c
¥ - = ::’ e . -
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case (b)

>

€] = (a%a Bl )[(L-1)" M(ee1) PR Je(a2b, 880, ) (g (217

o E3p -
x L+ Mogze )PP s M ) 4 "Az((-l) M

=0
, 4 i
! . 2(R . .
x ((*1)k-{([+1)P(5{[ [C6C 1/2{£_1) { +r)+k(c+1) 2(Rep)=1=) <
t:0
x 1ae(EeD)F 7)o R gy 2R IR )2 UReTY 2060 1
| g
f
-1/2 R
Do (o1 10g( Lyt S aplf) ] P 1B 2RI
i )
c-)
- -),
x (La1) 2(Rsr)=1 50, i¢ T 5119

(&) Cymmetric z:1av'ona,

The conplete symaetrie zslation s

D
s s (1) 5 (?) <: .8 .8 /
£ 4 v Lo K + 0 BN [ He 12)
R ] H o R
r=0
TR T . :.-g
f‘,r ‘:(‘!‘
s the particalar tntopral when W% 1o erpresston (Bl s
Ty badcs i 3‘7
Hep
cae (al “‘} ey
> H o
er eer  PTTT
mane {h; 1 o T er
:‘ - . ’1' - L
¥ - T s g t - :__ [y
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Making the appropriate subgtitutions we have

ul = 0

" - T IS
ey = A2 N e e P g ren e Py o3
A R C r=8 A
RV -1/2 2(Rer )=l «2(R+r)mla)
x (L=1) ((43) fc 1/2 F‘lij 4 1/ (L-1) ( (+1) (Rer. X
; -
|
{(Rer)=1+X ~2(R4r)=-1~
PPl ] (en? BT TR IR *F(1>dc}- (8.13)
CO
case (b)
. Y > - 2 E3
2 - W20 e Y el e e B,
’ C r=C
x (L=1)" Nt 1) 1("“ ’”} o) PTG
. L,
~) )5 - ; ﬂra -
d{ F( \/ 1/2 (R+1) 1‘X(C41) =2(R4r )=\ (l)d{ }
.,
aut L= 1
rase {a)
" 1”‘ 1 -
0 oc (Ajal«a§n1>g(§-1} Moren O tCagh s rﬁc?){e“(c-i}l * x

. L) =X (0 X Eab - )
x tog (L= (L1 F i e R U e 2 ey Mgt &
r=" A

NS TS VANNEN-2 GAES S R 3 X ~2(Rer)=]l- x ()

- {r-tF > L il l'?f’{f'l}’r*‘) 2

I
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LV 1)Q(R")'l"((+1)'2(“")'1‘“?‘“’]dz ~[ o, (£-1)10g(C=1) x

- A
wmlf( 2 -1)2(3")“((«»1) 2(Rer)=1Ap(3) g (j

O

cage (h)

= (Aga *Baaz)[(c 1) (i+1) F<3)1+(Aﬁb1+5§‘2)[ch(( l)

A
% 108t -1 @+ FO - e M rz_'é —-—-l(n 1M1
) 4
x {(t-l)w(3’l [e,(€-1)

o

2(H+r )\ -2(R+r)-k?(3)

log({=-1){L+1)

5 w14 AR )= (3)
W1y 2RI 2RI () Jgr e, (z-1)10g(K-1)F
C
m“"]} ('1(2-1)2(“")“(;+1)'?(R+r)”?‘3)dc} (B.15)
Lo
case (a)

- 1 h o -k
eé v (A§“3‘B§“u}[(('1) k((‘l) +\F())]+(A§b3+85bh){gé(c.1) X

14) ) (4) o Epb, \
x (Le1) 103((*1)? 7 a(l=1)" (C*l) T o = (- 1 x
. r=0 A
)\ ) 2 € (\ - ‘-.) E H - ‘ﬂ -
x (%e1) !{r‘v;r‘g)J Lo g™ 2y 2 BTt ym2er)=
L %5
2{Rep)mler L=cfierT)}ale) (6}

X lag(ﬂtl}i“"}}‘{z’ 2“’-1) (r+l) F lag -
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4
- -14A
'tcé(c‘l)198((*1)P(5)+F(6)}j z 1/2(C~1)2(R*r) +
{-3
(eI 00 c} (B.16)
case (b)

TEARE - IS Pt 28 Vit ATV WL R TONI S Dl

- 00 £ "
x (o)™ Logel)F P ae ) e ROy o 5T Z20200 )y
r=0 A
¢
. . er)elen o 1-
: (?‘1)"{(54)»“5); fegr a1y mI R g )m2(Rer)=1a
- - —f T s e D
. Zf:g({*l)f"(})# v 1({_“2(:{41') 1 )\(C“’l) 2(R+r) RF(())ML
g
-[C{‘((*l)lﬂﬁ(("l)i’(5)“?(6)]\} ('1([‘-1)2(;{4‘1')"1"}; X
CO
, 3
x <<~1>‘2‘“""*?‘5’d:‘¢ (B.17)

Part IIl. Arrliicatlog of doundary Conditiong

. s r) ‘.I‘.ls . 3 - P - e -, e
2aL0e {aillr Antie-zyoomastric 5 0atians,

<8  hall now arply the ~ouniary ~omiitions derived

tnopary 1 o8 tris Arpedix tn ths salitl.ng of part 11,
'?r’;"_ Q
A g (%) i3 a rezitar Tunctisn of ¥ at { = O

) YN . :
wiere g0i%0 I3 siven by (B.6),

rrooeading 3n In Appersliix A we Tint that the tarms
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app-aring in gg which de¢ not have the requirad % order be-
havior demanded b the boundary conditicn can be written in
the form

g "}\‘ g E:nz(.l)} k(2) (3.18)

andg

oy
(4 R A Diz)(O)] K(l) log € {B.19)
‘r=0

o
whare Di”)(o) # 0 1s the coefficlent of C'1 in the serles

developzant about { = O of the integrand of the integr:sl in

>(2)

K;4r involving F and agl) is the constant contribution {rom

the i~wer lizit of integration of the intesral in Kg+r
(1)

fng ¥ {n the inteprand,

involv-

Thus in orler to satisfy the hounduary condition we
must oouate the -eltfefe ts of v07) and k(1) yop v in (ma10)

Y

and (fa13) to wero, thus ohtatning tuo llnear homogene.us Q-

>t
b ]
-
-
.
Py
{.
o
»~
b
-
0
.

- a s .
12} for £ %' A0tlcn that gli f.-ms
1o the ¢ plementacy s t.o5hz 5271580y the Loandary caniitianp

Sentical iy, Feamicin< the partioalar integral we nots that Iif

4 %
A GRS WP AP
' oTg Togy © ETwalost v fur whish ?? £ 0 tho thy *arw in
-
. . Y )
iv o« 1) €5 %1t the least expraent bahavey [ ik
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Thus in order to satisfy the boundary condition, the following
inequalities must hold

A not reals 2R+Rt{k}51-2r

max
A\ real: 2R + A <1 - Ermax.
de can readily show that 1 is a lower bound for Trax? fory if
rﬁax = 0, then we would have Eg as the only term a»spearing in

the sumration. kut from (B.19) we would then have E& = O as
the nnly solution, This is not possible sinca the index R is
chosen such that Eg is the first non-zere E?, ilence our in-

egualities now bucome

A not rcal: 2R + R4 {k—)g_ -1
) (B. 20)
\ real: CH + X ¢ =1,

Wu can dijcard the possibility
- 2(R + r } - X = <}
X

. a
sinco thu bounlary enndltion wonuld then dsmand E =0
rm-l-g
vhich contradicts the Yelinition of ¢

.
nax

ati=1 "
i g7 (%) = 0.
r~31
Onc o chould note thiat in deriviag the by dary cone
ditinne at T = 1 we £ oindt tr,r osh

+

¢

jSXEN
X
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had to be zero as {~—» 1. However, since the point { = 1 is
a regular singular point of the differential equation, one can
readily demonstrate that these conditions are redundant and
only one need bhe applied.
| in opder to satl.iy this boundary condition we must

show that in the nalghborhood of { =1 the expression (B.8)
for gR(C) consists of terns which go to zero as { —>1 or that
any terms which do not 70 to zero have a coeffliclent which is
identically -=ero.

fxamining the solut.on gg we find that as {—>1 the
term in the cormplraentary goliation with least exponent behaves
like (L - 1)-A, while the te"m with least exponent in the parti-
cular intepral hehaves either like ({ - 1)- or like ({ = 1)"H+2

depand ing upon which of the Ihllowing apulies

(i) 2@ +2<at {-n}
U -
(L1) 2% + 2 = wd {- LN (B.21)
(111) 2R + 2 >R {- .
' ; . - . 2K+2
<0 note nere that the term Lenaviny Yike ({ - 1) is ob-

~

tained Tor v = 30,

Wil - f 3 i~ i " 3 3 - - %t . v s
If eonistoon (1) of (Zo21) a,7pilies Lhe lerm with
+

loast expornent {5 (F -« 1) «  ihis term ocun be shown tu have
& wan==ors Cowlllcient and honce e a7 dnaly satisly the t oinde
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ilenca (B.21) case (1) gives
M‘ {\]‘ < - 2-

If condition (11) of (B.21) applles and A is not real
the rerns (U = I)ER+2 and (f ~ 1)-h have different behaviors
as 7, —» 1 and >ar boundary coniition ctill demands that either
the coe""icient of (¢ - 1)23*2 ecuals zero vh.ch we have seen

to ho impnssidble, »nr that
2il + 2 >0
from wnich R = G, Ly 24 ese o clence (2.21) caze (11) glves
pd {x}g-z.

The pos.ibility of N real 41l 2R + 2 = =)\ must also be con-

sidered. :xa-ining (5.3) ve “ind thiv the ex,cnent

2(h +r) + 1+ % = -1

~ 3

for = % This wi 1 cive rise to & term in tha particalar
-\
intepral bLenavineg lize (L - 1) 1o (L - 1) and having a -one

ver: ceffizients Thni v ocrxliry enndition wiil then demand that

Staalivy 17 oo ze (404) a7 (.21) Lppties

-l
(7 - 1}
. -
ts gt ety osingulr torn, oo b puntn oy eandlr onocan
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rL r’k% <0

or if 'e make the coefficlunt of this term equal to zero. In
the latter case we must gntisfy a linear honogensous relation

in ag, Bg E Tren, exanining the remaining terms, we find

terms benaving lke

ol

1=k

-0 -0 g -1 am @ - DT

Bat the lnequallity found ‘rom the boundary condition at { = « 1

shows that .

23*"2(1"’%{)'.}0

Thus, again, the »ranlary condition demands that
2R+ 250

from which

R =0, 1, 2, vee s

Aow fram (Bl O) we ©ind

The procedores o) ow2d tera are ginilar v, those of

the rrecedqin” P, Tneorooulrs e gl Ut wE,
-y — o - i3% 4 » - - R - f - b
e L vk i al s miitin at L= € tnm .otz tihnt
- it £33
4 '1 by bt - } j} - ¥ 5
R + ': & for Gr - (ifv- :51).)
*0 -
43

L . . . . -
oo Lha hRoandany candition o 70 -0 b e g
K
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111
the "'sllowing inequalities hold
h!
2R + R4 {k }‘5 1 - 2r,,, for A not real y
. h (B, 23
2R + A K1 - 2ray for \ real.
At % = 1 we nust examine three possible cases
(1) 2R+ 1 <R {-n]
(1) 22+ 1 =Rt {2} (B, 2l )
~ 3
(141) 21 + L >RL - 2 }
13 )
case (1) the boundary coniition demands
2+ 1 >0
which rives
R = 0’ 1’ 2’ L N ]
and “e ‘ind, from the fnejnality (1) of (B,24),
R4 {a} < - 1.
cega ({1} with \ not real we a°..n must zot
20+ 1 > 0
,b;i'fiab,
r{";.", 1, -?, e
and the oyqiellty (Li} of [5,04) shoe that
a4 {%Lg £-1.
dtth A opeal snd 2R o+ 1 2 < we Tinl teress navine a

non-gero cceficient bohiving ilke
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-\
(T~ 1) " log (4 - 1)
and the bounda'y condition can %e satisfied only If

at{h}<0.

case (111) here we can satisfy the Houndary condition if

ai{-k}> 0

R {\} <o,

we make

which implies

or we miy not rostrict A as yet, but insist that the coeffi-
cient of terms behaving 1like (L - 1)-k boe zeroes In the latter

case we nust examine the remaining terms which behave like

"y - ;
(€ - 1)1 , (L - 1)1 M 1og (£ - 1) and (¢ - 1)°01,

How 1f 2k + 1 < 1 = #4 /X!, and since the t.rms bohaving 1ike

2H4+1
(L -1 ve a non-zero eneffictont, the boundary condition

domand s that
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l-f‘.{{\} >01

We now pu3t satisfy three inequalities simultaneously. They

are

1-8t {A} >0
2R + 121 ~R{L{\}

i \ ~
2R + RL{Nj <1 -2r_ .

If we examins, for r = @, the possible values of H and

max
a4 {A} which will satisfy all three inequalities we find that
the only permissible values of R are o = Gy 1, 2, 3y cav o

For B = O we can ghiow

0 < &f 2w\

ir

-...v../
Fa
—

-e

fr Lk

1’ :’, 3, s 8 y W f’i!’hi
RN} <o,

With PR o+ 1> 1 - RIS x'} we might still satisfy the

bauniary coniition withonut restricting N by setting the chof-
' 1 1=\
ficicn%s of terms teraving lire (4 - 1)1 k, (7. = 1) log(l = 1)

ey1al v wers,  Thic olve . rise to tw, more jlnear nomopgenenus

= O wo wauld now have Lo

r
satisfy a total 50 & ur lineur Bomsrene~is equasti-ng in only

i . s .
three UNAGTND AL, ok IS

5 . . . .
N L. From o the macer fnowhnlenh the
RY A 2

thodgh the matiwzatleal Lruf of this wiruld be (ifTicult)e
1

- N € - Y ] h . - vy e i - s v o
Heace 85 insure g aon=trivial solut.nn w8 oust incrasuaze tho

e i Y b N e fp o o S T S T FIS T PO S,
Sinmernle Ha warleii Wile e ONee T fAVL o LUNUVOED SLIUUNIELV LS
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the inegqualities of equation (R 24%) and we find no further

nerturhations with RLW{X'} S G

case (b) the application of the boundary conditiosns to
the symmetric and anti~gy—metric solutions of case {(b) result
1= relations of the same nature as found for case (a)e We
shz1l not inclnde this work here, buat shall merely state the
resultse One “oes not find any perturbaions that can satisfy

the woundiary conditions with Ri'{l } > Oe
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Acpendix C
Findte Jot Izpinging on Finite Plate

Fart I, Qerivation of houndary copditions
1) about { = 0O,
We have already seen that the solutions aboul { =

RS

must sa*lsry the folliawing bounuar aonditions

it
Q

gs is a rogular function of 4 at {

-1/2 a

4 g 1s & regular function of ¥ at { = Q.

2) At the odgcs of the plate l = - 1.
We decmand that thae perturbations of the frec surface
g, = 0, 1.e,, that the frec surfacec continue to originate at

thercdgo of the plate. From (2.10) we nust hove
. t
zlﬂ#{ix-fz-rz}zo s - 1

Substituting in the above we havo

- {2(§-b)k§-b} - (£-1) [(Z=b) + (Z=B)) g(
(Z=1)(C=b)(%=D) X

At 2 At Xt
-(A'Gl‘ t + YG‘?“tt)] + EEI/ 1‘61{9 “‘chﬁ Zz 0 at C T = 1,

]
'
the 22officiont =0 the toerm

[1X - (MG, + XG0

cin be o shown %o ~iutl wura ot o= o= 10 hate o gur begntory cone
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X4 Tt .
{Gl‘-o +62te }-0 at

for all time to This implies

"
]
L

G.,(~1) = (-1) = Os

e G

Substituting for G, and G, from (6.9) we find

1 2

8 a
gc( 1) = (( -1l) =

3) Upstream i{nfinity { = 1.

(a) The velocity perturbation w, must vanish there, l.e.,

lim v, = 0.
{—1

.2
¥ =H:f2{%5'

Snbstituting ve have

But

im LD D) ()] .
- 2L~
g {a(t- b)(’—b) (C-1E-0)(X-B)] }

which will be satiafied 1If

lia ([ - I)Gl Itm (2 - 1)62

Ry T S L
Mroa {(H.%) we Tind
8
11m (L - 12 =,
g~ »1 L

{4} The ;res:ure perturbaticn Py must vanish, We can
sati=fy Lthisz b.nilary ~onliticn By deaandine that
4,

e
i &diro L o= o,
L -} L
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This will be satisfied irf

s G, () = 1im G,y(K) = O.

ANEY | 7-91 ©
Tsing (56.9) we find
3

1im g3 = o,

1
L)} Lownstrean ialinity ¥ = b and L= D
Ao -lemand that the agymptotic behavior of the jets
leaving the edges of the plate be that of stralght jets., This
iaplizs that an sbscrver sovine with the asymptotie jet velocg-
ity scs no change in w,. roceeldlny is In szcetions IV and V

our bandary condition then demands that

xb

§ » 1-h 1-
-b gg -b G = ({-b) - o = Q
(L-b) gp LL-D) 76, ] = (X0} 75 [(S-1) 2}
and
—— 4 - I-R,‘ g kwl l-xw
(X-5) & 77757 = (0B B [(L-B)" Gy, ] = O
l{ "“\vn c
These rejulrements will be satislted (S
- 3 -\ 5
(L -8 " g? amd (L -1) 0 g"
extzt at L =5 .0 bor spevtively.
fart 11, Lowatlon o7 the Uiyt oang of the Ferturhation
Fiiiatlion
If cro orub st ltan e Lo the carturcation ejuation (/.. 13
S s
LLe®(7) 1 « 1307)
T n = i, )T d i £ ST 4, Sy Lk w2 srrive
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- 1
8¢ * & [;é* Rl ?fg;

. g [__31 . - L S LAZ~2A . 2 4
E(r=1) C({=D) C(-B) (C-1)2 ((-b)2

L

SR LS 422 122
(2512  (LDI(L-F)  (L-1)({-B) (L-1)(L=b)_

« v “
(- 1 .1 hQ (Cal)
{-b)

L(L-1)  2r(f-v) 2y

1

P

where g and h denote cither symmeiric or anti-symmetric quane
tities.

Equation (%.1) 13 a second onrder ordinary differon-
tial equation »of Fuchsian type. It hag reguluar singular points
at £ =0, 1, b, und % in the finite plane and has oo as a
regular siazular ;nints  aftar putting (6.1) into standard form
{see [7 pp. 155 ot 5cq.]), we can find the evyonents of the

singilurities in the Tinlte rlane

qj-\ Fuj‘”"i*"- it L = F
g, =} g1 = X st C = b
g &

AT er 5 trgrelar=att o a7 Yro danecado gt voortsgt la
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we have the "allowing regular singularities and exponents in

tho finite plans for the differential equaiion governing H

0, ¥ at =0

o, 1 at r=1

O, 1 at ([g=2b

0, 1 at [ =%,
Snlutio 2 Homogone Equatio

Kiowing the pnsiticn of tho singular points and the
expoarnts »f the zingularities, we can write tne complementary
golutinns of the 4iflerentiul equation for H, Then applying

the transformatinn ubove we can find the ¢nmplementary soluticns

for g denoted by K(i).
gbouyt L =0
(1) 1/¢ - 1 - A Y
= o Yen T M M-t et
(C.3)
e ] - .
S IR S TR IT UL
who e 1) and F{J) are resoalap anl coonezereo 2t o= 0,
acgal L= 4
f {) §-./} - 5
R T R CE SR TR
3 1 3 y {%)
4 / i LI
A oo {N=1) (reb} =) i (L=-1) F
* (k)
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where ¢, = constant and F(3) and F‘h) are regular and non-zero
at L = 1. Je also know that the following linear homogeneous

relations with constant c¢sefi'iclents holds

LD )
2 .0 k3 4™ .5

i
»
-

about L = %

k(7 o (221" ey Vg M ()

it

-2% - {
e (r-1)""" (b)) 10g (gap) LD

H

(r=1)" D (gt et5) (C.6)

+

| =g
where ¢, = constunat anl F()) and ?(6) are regular and necnezero

1)

at { = b. In at'ition we may write

A1) (D) A4L) .
¥ = aja + b3h where u_;h1+ - b3ah = b2 N
h(‘) = ahE(a} + %hh( ) (Ca?)
ak:it § = %
7} -2 L YR Y
£ o e e Yy P 7
4) -X% - 14X -
A z,iT-1] (7-t) MG tor (25 #7)
X L S Y
v (r=3) Tireni(retY  F (a8t}
(¥} )
Whetg ¢, = gLt amt gt F i F are: regilar nd none-ero
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A1) (D) L8

&5-- + bs

(2) (7) L(8)
K &6!{ + bél( (Co 9)

1t

: - 5 0

abouyt & = - 1. The point L = - 1 15 an ordinary point of the
dif®erential equation (C.1)s As a consequence, we may choose
as two llnear independent complementary solutions K(g) and

K(IO) siuch that

7 = K = o
&0 = K0 -
JOTeover wWo may Write
K(l) = aTK(Q) + t7K(10) where a?ba = boag = by, 20
K(?) - a&K(?) + bRK(IO) (C.10)

Somplete Solutions of iartardszion ECUR* 003

In ~rdar ta write the complete sy m-tric or antl-
a7 metric 31t s of the corturbncian enantion (Cal) wo must
fint tn particalar interrals The particulsr intougral can be
found by using *he =ethnd 20 geettons IV ant Ve Yo shall have

wid o the Wronsslan o7 the e uplomeatary solhtions, Srom

. (-~ 3 -
gl} £ f '! . - f
(: A hyo- AT SR g L 3\ I S | Ar
v - 7 v TR h
JLT STt el ]
-:/" -:f). bl.‘_ -~ ;’)» , N
= 207 (Y1} frany T(reuy 1. (C.1v}
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(1) Anti-symmetric solutions
The complete anti-gymretric solution is

a_, (1) a (2]
A2 KT+ BRK r-o E3 Xo,r (Co12)

where A;, Bg and Ea are urknown constantg and the term Ea ¥§+r

is the solution for a particular integral of (C.1l) when h{%)

i3 repluced by
‘ ' 'lB+r
= a i ——-&—-——1)———- .
Ror (i: A (€ - b)Y - B)

Making the aprropriate substitutions in (C.1”?) we have

2 =

A (2)

(D 182 (a1 o) Mg -B

]+

PR { Sl (8 DRELER SLITAR 1 Al 8-
1/2 (1)\T ﬁ(ﬁ+r)+1+2k
=1

;§; -I(c 13" Mg-b) (c-b)* ]

- fle S r}—)
X ({"b} (l‘l K(I‘:'b} ( * '\(") r 1 — gy L - 1 — ]d:
¢ L(g-1) L{r-n)  27(r-b)
r - a) +1a Ve -
(2) {1/.(:_1}-(R¢r) 14 -’)-fJ+A) k(ﬁ—f_—(h‘r) A <

r1) 1 1 iy /
i_.. { 1 —— e e ~ }‘.{’ : (f‘.]3)
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about & = 1
ﬁ

= (A%a;+B8,) [(L-1) PN Eab ML 3 Jacalp +20,) x

x Loy (G- N Leb) MEB M og (80P a (g-1) "N gy M By M g

E b _ = e
* lgé (C‘b)k(ﬁ-b)x‘{(c-l)F(B) [c%(n_1>2(ﬁ+r) +2A N
r
<1
mtrerdeh )T - )41+2N
x (L=b) (R+r) )\((-b) (R+r) :\133((-1)?(3)+((-1)2(R+r .

)-(R+r)-A((-.GJ-(:wr)“KF(Q)][__1.__ D S ——l—,_—]dt
¢ L(r=-1) 2 (L-b) 2 (¢ =b)
2{(R+1 ) +2+2h w{R4+T ) )

] | (g-1) (z-b)
-1

x ({=b

H
-[ck(c-lzlog(c-1)?‘3)+ﬁc"

x (-F)"BHIG) 1)

1\
L __Jar ¢ (c.i)
Lir-1)  Z(g-b)  27(z-b)

about L = B

na - + 3 ;a - I :‘-’. :.- \-ﬂ(::) b ".:1 Y
£, = ey eipn MG (L0 TR e gy B ) x

e

R B I C RS L AR T D F RS LI R L

” i
b 4 r(" 1'\'-1)

" Vi §

Y -\ ¢ D)

Y b
Ll 'P \“(»\ Ml . Y B
. ) ;o AL-t) ECC-b,r

- ——~“\{-.

&
r- .

{HerYeley
x

2, (€

{r-t

R

P Yol wi fbh % . . -
- wiiaersel=l = wilerjal £} 2{Her)si s
x (L=t {77 iog{7n-r)F «fral)

—~

5 - AT m_-_‘_‘t:;:.-i. i*) .
rr Per g-‘ Woeevas o -

- _._1_.:.__..”!'
5 4
Tty _ - Y, ‘.‘
‘l «7 - ey e d )rei'ui

o
[}

o
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4
1‘ 2(R+r)+142\ =(Rer)+l=A _
1

Lo, (C-0) 1og(&-b)e T 4r &N | (z-1) (¢=b)

(TR 1 L L yqg ; (Ce15)
C{g=-1)  24(L-b)  20(L~b) I

about 5 =k

(7) -2\

x[eg(C-1)" 2N 2=ty 25 Mogtt-B)F"  e(r-1) (8)

(g=b)M (B M

@ ETb =
-« —%3<c-1>‘2"(<-b)"cz:-m’u:(c-'sw“’) ?{cg(z-1)2“"'r’*“’* x
r=

- 4

=(il+¢r)+l=X (7)

w{FAeT ) 2{R+r)+1+2A .

£(L-b) (L-~b) Leg(C-B)F 7 +(2-1)

x (geb)” Iyt y 1 1 1 )i

r(r-1) 25(g-b) ) 2L (r-b)

(7),p(5) 1

{
=1

Z(Rer)+1+42n «{Ré4rje= X

-{ce(c-i)xag((-S}F (z=1) (Z=b)

={* la
v (2-F) {ner)+ 1?(?)

(mhm o —A— . —L 742 { (C.16)
r(g-1)  20(g-b)  2ULD)

41

- ..'f«gQ[)—:;} {17,
{r-1)

»
Fsd
1
H
ol
S
-
k.
L
H
e
+
' -
+
'S
i)
[
ty
?
-
&
&
]
N,
]
¢
".
-
FAS
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2{Rer)+1+b\

- —1L 1 at k19| (z-1) (¢=b)

2 (b} 9{((-5) J

— w(i* -‘:}\ . .
(€5~ (9) [—3— . —L 14 f (Ce17)
L{=1) c"i('(-b) K{C'

(2) Symrmetric solutions

o,
g3 = a3 K(l) + B3 K(Z) + - p3 w3 (C.18)
5o ) R ;28T Rer

. .3 . . . -
Where ao, 5§ and hg are varznown constants wd mg Ka‘, is the
solut’ a for a particalar integral of (C.1) when h(r) is re=-

plicet by :
. e (r - QE ';ﬁ-&r
Nier = Prur ’
(L= b =) |

Subst:tatine in (C.18) we have

abzat L
P1/2 , L =20, X ToAL . -2\, ~ N\ (2
el = A2 2y M e e Y sl - 1" e M e-By
o NS SO
- ‘f:; _R:(f‘_lj_ \(:- ) ((‘b) 4 rl./u’;.&lf I-’.llc(cnl)‘ ! x
: i J

LiG=10  TIAL=i)  Ar(g-b)

.oy ! “{lemYa ¥ ' Y - b ) {1
Y A “ S g S i -'_-1"1-)-“\ - -{,\"!‘)'. ; L)
U 258 7 ak) (1) R ARL
i
~y
bl -
r Y . 1 A
X ;‘»«-*-'A....._... - > - , — 35;,, - {{‘111
Lim-i TiLer) (LT ;

w{R4p)=2N x

4

P
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about & =1

126

62 = (agay ) (0= @b Mg -BF D 1 ade B0, x

)
x[ck(C-l)1 A

]
>

r=u

Y
A

x((_l)2(h¢r)+14a\(t-b)-(ﬁ+r)-k

- ek - )
oL(L=b)  2L(X

e(Rer )=
x({~1) (Fer)=h

c{er)eled)
(r

x (| —d— o ——L

- 1
C{=1)  24(Z-t)

20(L~b)

axut S =1
.8
3

'."~ ; 1 -3
x[~, (1= Mo ML E) Mog it

-
+~ =7
-y

ves -2\ L 143
6p (Afa, +Bla 3{g-1)7 (L=t "

(C_S)-(K*r)-k (3)+

Z-h (¢-t)

() (25 10g g =137 3 s -1)"2

Jag ;

vt"f
J
yo !

il

(-0 (g-5)

r
-1 P w-mr g L g-yFtd jf%ﬁm x

-1

log{¥=-1)F

1) 2 BTV L oa(Ber)ah p pym(Rer)-Ap(b), [ET%:TT -

51 % “le, (=D 1og(g-1F Paply 172

=1

-(R*r)-k?(B) <

172
g

xF(#)]

x

(C.22)

— }" i
(2- B0 e ta2nyenin)

ST WIS W Y R 1/2
- - -A el ((-;) [N AT ({:-b): ’ :C':': X
e, . - -
- ° - w
0
K{;-.‘:' +‘\ M - <
x“yu { ) P e{.ier e -\(r-... -( ‘r‘-k"' (o)

; I s ‘f‘;;‘ ] ‘..Klf ;\ (',r)
R0 I S M 0 1 I 4

]
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2(R4x)+20 -(R+r>-l(C4s)-{a+r)-myta)

+ ¢3¢ {{-v) ] =
(5, (6)
[—d— o <[ ¢, (L=b)10g(=b)F ? x
L(g=1) 2 {C-b) acsc;s)]d( Ceg'c ¢ ]“&
. c1/2(<_1)2(3¢r)ﬁzx(t_b)-(n+r)+1-x(c;5)-(ﬂ+r)-kF(5) x
x (—b— o —d o A _jar ) (Co21)
B J

L(g-1) 2(Lb) 2

8, = (Anas*ﬁna6il(ﬁ-l) ((-b) (C-b) P )+ (Anb5+Bnb6) x
-2x —-1 - - -—
xlegtt-1)"2 (g2 (5 10 (¢ -B)F 7 ag-1) 2 (b Mgt
.8 §
& 5 \
¢ 3 TP g-mte® i Syr'?
2 < £-B) (€ - (e’
g1
2(Rer) 42 —(far)e ~(Rsr)+1-)
R L Y r)+ 108(C'S)F(7)
1/2 + Her )w - m(Her =
2 2RO ADN , (REIA o m(ReT)on (8)
X [ o e o L Jag -l (C~F)10g(r-F)2' 7
D~ i 27 (2 b % mlegitonlice :
v
N S(ler) el (Rer)= T 1- ;
.p‘ﬁ’E; e ‘ NTRSH v *(z-5) Gr)el=h (7}
0
x {— - —— e —h ] AL . (0,02}
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.m!&‘ Bul

3
s ‘ 5. 1x(%) {10) Edy [ (9)
gR & (;;.?mﬂas)x +(A,gb7tﬂgb8)i( + g _...‘:‘.... X

1/2 2(Rer) sl «(Rer)=2\

(¢~1) (C=b) -(R+r)-2x5(10)

4 (g=b)

x [~ U NN W Y {19 lez(c_1)2(8+r)+¥k 2
L(C=1) 20(g=b) 2¢(ZL=b)

x(i_h)-(R+r}~2k(i_g)-(ﬁ+r)-éax(9)[__l___ R S S ]d{}
§(T-1) Z{L-b)  2q(L~b)

(Ce 23)

Part IIl. Application of Boundary Conditions
We shall now epply the boundary conditions to the

cumpletes symﬂétric art anti-symmetric solutions of the pertur-
bation eguaticn, Since tha method of attack iy quite simiiar
to that of previous sections, some algetralc detall will be
calttod,.

(1) Anti=sym-meiric solitlons

at L =-1 a
i'{ -1} = O|

a
The 33lution g ausat { v - 1 is e-uation (C.17)

7
w& note that the lerlvative of the particuiar intezral is gzero

at L = - 1 and hence wo can 33 1is5ly the Wwundary conditinn if

!'Araa + &?‘lg} z 0O, {C.24)
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-1/2 a
=0 g (¥) 1is a regular function of 7 as {—->C

The zolut.»n g; valid near £ = i{s sguation (C.13).

Je can satisfy the boundary condition by setting eyual to zero
a
the coefficlents of the terms in gy that do not possess the

pshavior reyuired by the poundary condition. This glves

-8 ) -.B (1) %
(2p + % 2a )= (C. 25)

1 & _a 5(2) A
[A %‘. E. D, (0)] = (C.26)
(1) 2)

where a and D_""(0) have been defined preoviously.

At L sbor® lm (%) 6L and  lim (C-B) g0
C-9b Sad

exist, l.e., are finlte,

an taspecticn of the 2quations (2.19) ard (C.17) shows

that (£.1%) {5 the same function of % as (C.o16) Ls of b and
hency we get the sane nformation from both brundory ~onittinns,

we shall apyly only the druaniary contiticn at { =

e
&
ot
oYy )
*1
13

ta

13

ol
[

he compiemontary sclution sautisfy the

bouniary ~cnidltisa tlentieally, IT we leman] that the sxpoe

) A
ey ¥ - " . * o - 1 b - . - .
nent L the tercy Ly ({=b) g aricing from the partiular
T oi® n ovnm t o mtiah s # od cra o el vso Y EPE o G ) S
ati e T M h . S5 3E LN TAVE & iLTiaw Vviiut, w& Tinl thay
b .\ i &
R 74, , < - T N\ n9* reyl
— ek K
L
b hY N -
o= ; - - f'_' 1- - e
joul ' 3.4
WU LGl L0 Tt 8L @ TLule g aunte ol e caavian (2,00
Lo I. A T sT LLweT noony foror o IhE lrnog2alltiui oanive
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now give _
R+Rt{x}_go for X not real
| (€.27)
R+ A <0 for A\ recal.
ar g =3 a
8(1)-‘- O

As in the preceding problem, we note that { = 1 i3
& regular siapular point of the diflerential equation and we
nesd apply only one of the two boundary conditions derived in
part I of this Appendix since the other uill then be satisfled.

In order to satisfy this boundary comditlon we must
anow that in the neighberhood of 7 = 1 the expression (Colk)
for s;(C) consists of terms which go to zero as L —21, o that
any t-rms vhich 4o not ro to zvro hava;a caefliciont which s
{deatically zeroe |

The tera with least exponont in the CCﬂpIHm&ﬁtaPy
solutisn behaves !ike (C-l)-:x while the term {rom the;particu-

=2\
lar integral with lea.t exponent nchaves like {{-1) 2 oy

l‘l‘:" *2

(g-1 d-ending upon which of the folliowing angplilas
(1) PR oe oA i - :zx_}
(L4} 7k« 2 = A | - :n;} {(C.28)
"
(119) 28 - > al! -l
Caso ({.: the =oandary cowiit: sn 4cmards 2R ¢« 2 > 0

- - p a , ‘-V
gavineg Ros Oy 1, 2y eae 4 and tnu lneyuality shows R tk bo- 1L

Case (1:): JTer X not roal we 27ain mucst have
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2R+ 2> 0

giving e
RL‘X}S-'L

If )\ i3 real we find there will be terms in the par-

LY

ticular inteqral like (g-l)-z log (Z~1) having a non-zero

coelficlient, Our "oundary condition then demands

R {x}<c.

T

Case (i11): in Tuils case we can satisfy the boundary

codition by u¥ing

Ri { N} o< 0.

[ 4

Or we muy nat .t rectrict A, rut set the corefiiclent of terus

-.\\
N equal *o zer-, ‘'&¢ mist then exanine

-

L4

boehaving 1ixe
the ramabning terms wnfch oehave | ke

1=-2% D+

tup (7-1),  (%-1) .

-0 e

If wow CR ¢ 2 ¢ 1 - 31 7%, we 5til! must have
giving
and e {ncgiallty ol on

v . . L : - - .
I€, noreewer, 23 oe D31 e a4 SO0 and wr faztct that

3 ; . ™. g - Y
1. 84 12\ Yy Gy, owa hEve trree frogatities o o natlisfy tmilae

F e .

tansrusly.,  They afsé tha twe lmewdlately at-ve and (TL27),
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From these and the fact that R 1s an integer ve find RL {_x}g 0
for all possible values or R and A,

Again, however, we may satisfy the boundary condition
by setting the coefficient of terms like (C-I)l‘zk and
(1-1)1'2*

linear homogeneous relations in A%, BS and EJ. We now find

log {{~-1) egual to zero. Thzse glive rise to two

that {f we as:iume Foax © 1l wa are forced to satisfy more equa-
tions than the n.umber of unknowns assumed up to now (Ag, Bd,
ED, Eg). Fr-m the aaer in which the equations arose, they
would a-pear 0 ve independents Heace this would make Tpax > 1
(in -rder tz 2z-.re the existence >{ s non-wrivial solution),
r Prax 15 at J-nct as proat as 2, rthe invynality (C.27) 13

stransthewc! 4 0 v 2 Tind thet we can ny l-onger huavae
2o+ 2y oad {= 20}
Hence wv - nciude tnere are no anti-syametric perturbatlions
with R4 ,‘x, > T
A
(2) 3ymmetric sslut: .ns.

at %L=-1 <

-~ LI « ; . . - ..
e =mlaton Torogpl iz e natoon {(Cur3)e AppRlying

» ¥ » R 1 N - . S - e . \
the Lodcfary o oatotica oW Tl we must sotiofy the equatlion

"
s
"
i
B
”
'
bt}
ki

yvoverny (75,05 we Tind that
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8 s (1), _
thg + 3 2 e alP) <0 (€.30)

at {=bort: lm ({-b)’kg’ and lio ((-S)‘hgs exist,
-2t z—b

1.30, are fi."ii.teu
Aoplying this brundary condit'an at { = b to E% given

by (£.21) we fini we must satisfy the {ollowing inequalilles

R + 4 k}s_lur A\ not real

rax

f
L

a «+ A 1 - Toax A real.

(Cve3l)

At tnls point in our development the largest lower

bound we can as.ure for ruax i3 zero,

st ¢ = 1 11z g%(n) = 0
- L-—31

gg valld near ¢ = 1 15 (Z.20),
in this case, correspsnding to the situati~n we
found 1n the antl-symmesric case, we must exanine the relative

siza of the exponenis
s 1 anl R {- Ihj.

The ;>59ui%le cus~s are

(1) froel <Rl {-hg
4
(t1) ‘2«1 «RL {=00 (Co12)
{14} 4 1 > i o - 2y -
H o!
=~ ¥ b
v ams Faox i - &b = . o . PR B A g
Case (il since *ne Terms hahaving live (D13 ~an be

PO . . . P & . = . L.
w0 0 RaNe w BThegers Togfiliclent, W Sulh Love
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2R + 1 >0
which gives
R=f}, 1,2,0...

Than the fneguality (C.32) case (1) shows

RL{\I( “%o

a

Case {i11): for )\ not real we must stil'l make 2R + 1 > O
vhich now implies

st {Z}<-3.

Por N\ real, J¢ find teras in the jarticular 1ntegrai
having non-zero coefficients behaving like (C-l)'zklog(cﬁl)

and 2ur byundary condirion wiild make
ls -

Caze (141): the boundary crnii{tioson can be satisfled

etthe~ (a) by naxing R J - 2\} y O which faplics R4 {R b ¢ 0

or {tj, &y seuving ogyual to =ats the coafficlents of terms bee
-2 X .
hawing ige (7=1)""7, 17 (h) s 'rye we must go on and examine

terns Llxe
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If we satisfy the boundary condition by making 1 - RL.{zkl} >0
we have to satisfy thres inequalities simultaneously, namely

234121-%{%}
1-R {2} >0
RRL{\} g1-r .

If one as3umes rmax = O there appears to be a.pussible
choice of R such that RL{A}> O. But withr =0 we find
we must satisfy three lirear homogeneous eguations in the three
unknowns A;, Bg and'Eg. This would regiire ti:at for a none
trivial solution, i.c., ARy Bf and E’ not all zero, the deters
“inant of tho coarficlents of the unknowns must be zcro. Tnis
would not arpcar tc be a likely possibllity, although we are
not in a positicn to ovaluate the cpefficients in closed form
in order to show this n-thematically, Assuming the determinant
not wero wg have o zuke r,. . at least as grest as 1, and in
such a'case ve find thure arc no pessidlittlicos of satlsfylng
ou'ﬁwq:hmmuntusuRhR{{X}>fL

The fcaalning 7os53ibility {s that we 53tlsfy the
bronlary eondit-on not e demanding 1 - R {zx } > 0, but by
setting wQunl s zers the edeffilri-ats of toras behaving lixe
(g1 ,‘10‘k

ebive W Tan $50M T.,, 13 at 1o:st as lurge as 3 and this would

and ({~1)° -“k‘“g((-’). How even without the arpusent

[+
ES 4
3
3
L2
o
[
oJ
-
-
£
-~
»
(34
el
[ h)
=y
~~
O
»
(W)
H
B
(2]
1o
ta
Find
[
A
]
-
N
'
&
]
T
=¥

A PR : pCsle
Biligy of ~ith r case (1!) or case {144} =f (£,32) buing appli-
catl-e Thiaz, agaln we fiwl no posgisle ss1.%:ng with

Blgh s> 0,

[ 9. -
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